- results
- .gitignore
- 1Numpy 基础.ipynb
- 2Matplotlib 基础.ipynb
- 3Pandas 基础.ipynb
- 4Sklearn 基础.ipynb
- 5决策树.ipynb
- 6神经网络学习.ipynb
- _overview.md
- _readme.ipynb
- coding_here.ipynb
- essay1_ch.txt
- essay1_en.txt
- essay2_ch.txt
- essay2_en.txt
- essay3_ch.txt
- essay3_en.txt
- iris.csv
- mnist.npz
- mnist.py
- model.h5
- myModel.pkl
- out.txt
- pie.png
- Pokemon.csv
- search.py
- 练习题-matplotlib.ipynb
- 练习题-Numpy.ipynb
- 练习题-Pandas.ipynb
- 练习题-scikit-learn.ipynb
练习题-Numpy.ipynb @96fc089 — view markup · raw · history · blame
Numpy是Python做数据分析所必须要掌握的基础库之一。
1. 导入numpy
库并简写为 np
(★☆☆)¶
(提示: import … as …
)
# import numpy as np
2. 打印numpy
的版本和配置说明 (★☆☆)¶
(提示: np.__version__, np.show_config
)
# print(np.__version__)
# np.show_config()
3. 创建一个长度为10的空向量 (★☆☆)¶
(提示: np.zeros
)
# Z = np.zeros(10)
# print(Z)
4. 如何找到任何一个数组的内存大小? (★☆☆)¶
(提示: size, itemsize
)
# Z = np.zeros((10,10))
# print("%d bytes" % (Z.size * Z.itemsize))
5. 如何从命令行得到numpy
中add
函数的说明文档? (★☆☆)¶
(提示: np.info
)
# numpy.info(numpy.add)
6. 创建一个长度为10并且除了第五个值为1的空向量 (★☆☆)¶
(提示: array[4]
)
# Z = np.zeros(10)
# Z[4] = 1
# print(Z)
7. 创建一个值域范围从10到49的向量(★☆☆)¶
(提示: np.arange
)
# Z = np.arange(10,50)
# print(Z)
8. 反转一个向量(第一个元素变为最后一个) (★☆☆)¶
(提示: array[::-1]
)
# Z = np.arange(50)
# Z = Z[::-1]
# print(Z)
9. 创建一个 3x3
并且值从0到8的矩阵(★☆☆)¶
(提示: reshape
)
# Z = np.arange(9).reshape(3,3)
# print(Z)
10. 找到数组[1,2,0,0,4,0]
中非0元素的位置索引 (★☆☆)¶
(提示: np.nonzero
)
# nz = np.nonzero([1,2,0,0,4,0])
# print(nz)
11. 创建一个 3x3
的单位矩阵 (★☆☆)¶
(提示: np.eye
)
# Z = np.eye(3)
# print(Z)
12. 创建一个 3x3x3
的随机数组 (★☆☆)¶
(提示: np.random.random
)
# Z = np.random.random((3,3,3))
# print(Z)
13. 创建一个 10x10
的随机数组并找到它的最大值和最小值 (★☆☆)¶
(提示: min, max
)
# Z = np.random.random((10,10))
# Zmin, Zmax = Z.min(), Z.max()
# print(Zmin, Zmax)
14. 创建一个长度为30的随机向量并找到它的平均值 (★☆☆)¶
(提示: mean
)
# Z = np.random.random(30)
# m = Z.mean()
# print(m)
15. 创建一个二维数组,其中边界值为1,其余值为0 (★☆☆)¶
(提示: array[1:-1, 1:-1]
)
# Z = np.ones((10,10))
# Z[1:-1,1:-1] = 0
# print(Z)
16. 对于一个存在在数组,如何添加一个用0填充的边界? (★☆☆)¶
(提示: np.pad
)
# Z = np.ones((5,5))
# Z = np.pad(Z, pad_width=1, mode='constant', constant_values=0)
# print(Z)
17. 以下表达式运行的结果分别是什么? (★☆☆)¶
(提示: NaN = not a number, inf = infinity
)
0 * np.nan
np.nan == np.nan
np.inf > np.nan
np.nan - np.nan
0.3 == 3 * 0.1
# print(0 * np.nan)
# print(np.nan == np.nan)
# print(np.inf > np.nan)
# print(np.nan - np.nan)
# print(0.3 == 3 * 0.1)
18. 创建一个 5x5
的矩阵,并设置值1,2,3,4落在其对角线下方位置 (★☆☆)¶
(提示: np.diag
)
# Z = np.diag(1+np.arange(4),k=-1)
# print(Z)
19. 创建一个8x8
的矩阵,并且设置成棋盘样式 (★☆☆)¶
(提示: array[::2]
)
# Z = np.zeros((8,8),dtype=int)
# Z[1::2,::2] = 1
# Z[::2,1::2] = 1
# print(Z)
20. 考虑一个 (6,7,8) 形状的数组,其第100个元素的索引(x,y,z)是什么?¶
(提示: np.unravel_index
)
# print(np.unravel_index(100,(6,7,8)))
21. 用tile
函数去创建一个 8x8
的棋盘样式矩阵(★☆☆)¶
(提示: np.tile
)
# Z = np.tile( np.array([[0,1],[1,0]]), (4,4))
# print(Z)
22. 对一个5x5
的随机矩阵做归一化(★☆☆)¶
(提示: (x - min) / (max - min)
)
# Z = np.random.random((5,5))
# Zmax, Zmin = Z.max(), Z.min()
# Z = (Z - Zmin)/(Zmax - Zmin)
# print(Z)
23. 创建一个将颜色描述为(RGBA)四个无符号字节的自定义dtype
?(★☆☆)¶
(提示: np.dtype
)
# color = np.dtype([("r", np.ubyte, 1),
# ("g", np.ubyte, 1),
# ("b", np.ubyte, 1),
# ("a", np.ubyte, 1)])
# color
24. 一个5x3
的矩阵与一个3x2
的矩阵相乘,实矩阵乘积是什么? (★☆☆)¶
(提示: np.dot | @
)
# Z = np.dot(np.ones((5,3)), np.ones((3,2)))
# print(Z)
25. 给定一个一维数组,对其在3到8之间的所有元素取反 (★☆☆)¶
(提示: >, <=
)
# Z = np.arange(11)
# Z[(3 < Z) & (Z <= 8)] *= -1
# print(Z)
26. 下面脚本运行后的结果是什么? (★☆☆)¶
(提示: np.sum)
print(sum(range(5),-1))
from numpy import *
print(sum(range(5),-1))
# print(sum(range(5),-1))
# from numpy import *
# print(sum(range(5),-1))
27. 考虑一个整数向量Z,下列表达合法的是哪个? (★☆☆)¶
Z**Z
2 << Z >> 2
Z <- Z
1j*Z
Z/1/1
Z<Z>Z
# Z = np.arange(5)
# Z ** Z # legal
# Z = np.arange(5)
# 2 << Z >> 2 # false
# Z = np.arange(5)
# Z <- Z # legal
# Z = np.arange(5)
# 1j*Z # legal
# Z = np.arange(5)
# Z/1/1 # legal
# Z = np.arange(5)
# Z<Z>Z # false
28. 下列表达式的结果分别是什么?(★☆☆)¶
np.array(0) / np.array(0)
np.array(0) // np.array(0)
np.array([np.nan]).astype(int).astype(float)
# print(np.array(0) / np.array(0))
# print(np.array(0) // np.array(0))
# print(np.array([np.nan]).astype(int).astype(float))
29. 如何从零位对浮点数组做舍入 ? (★☆☆)¶
(提示: np.uniform, np.copysign, np.ceil, np.abs
)
# Z = np.random.uniform(-10,+10,10)
# print (np.copysign(np.ceil(np.abs(Z)), Z))
30. 如何找到两个数组中的共同元素? (★☆☆)¶
(提示: np.intersect1d
)
# Z1 = np.random.randint(0,10,10)
# Z2 = np.random.randint(0,10,10)
# print(np.intersect1d(Z1,Z2))
31. 如何忽略所有的 numpy
警告(尽管不建议这么做)? (★☆☆)¶
(提示: np.seterr, np.errstate
)
# Suicide mode on
defaults = np.seterr(all="ignore")
Z = np.ones(1) / 0
# Back to sanity
_ = np.seterr(**defaults)
An equivalent way, with a context manager:
with np.errstate(divide='ignore'):
Z = np.ones(1) / 0
# np.sqrt(-1) == np.emath.sqrt(-1) # False
33. 如何得到昨天,今天,明天的日期? (★☆☆)¶
(提示: np.datetime64, np.timedelta64
)
# yesterday = np.datetime64('today', 'D') - np.timedelta64(1, 'D')
# today = np.datetime64('today', 'D')
# tomorrow = np.datetime64('today', 'D') + np.timedelta64(1, 'D')
# print ("Yesterday is " + str(yesterday))
# print ("Today is " + str(today))
# print ("Tomorrow is "+ str(tomorrow))
34. 如何得到所有与2016年7月对应的日期? (★★☆)¶
(提示: np.arange(dtype=datetime64['D'])
)
# Z = np.arange('2016-07', '2016-08', dtype='datetime64[D]')
# print(Z)
35. 如何直接在位计算(A+B)\*(-A/2)
(不建立副本)? (★★☆)¶
(提示: np.add(out=), np.negative(out=), np.multiply(out=), np.divide(out=)
)
# A = np.ones(3)*1
# B = np.ones(3)*2
# C = np.ones(3)*3
# np.add(A,B,out=B)
# np.divide(A,2,out=A)
# np.negative(A,out=A)
# np.multiply(A,B,out=A)
36. 用五种不同的方法去提取一个随机数组的整数部分(★★☆)¶
(提示: %, np.floor, np.ceil, astype, np.trunc
)
# Z = np.random.uniform(0,10,10)
# print (Z - Z%1)
# print (np.floor(Z))
# print (np.ceil(Z)-1)
# print (Z.astype(int))
# print (np.trunc(Z))
37. 创建一个5x5
的矩阵,其中每行的数值范围从0到4 (★★☆)¶
(提示: np.arange
)
# Z = np.zeros((5,5))
# Z += np.arange(5)
# print (Z)
38. 通过考虑一个可生成10个整数的函数,来构建一个数组(★☆☆)¶
(提示: np.fromiter
)
# def generate():
# for x in range(10):
# yield x
# Z = np.fromiter(generate(),dtype=float,count=-1)
# print (Z)
39. 创建一个长度为10的随机向量,其值域范围从0到1,但是不包括0和1 (★★☆)¶
(提示: np.linspace
)
# Z = np.linspace(0,1,11,endpoint=False)[1:]
# print (Z)
40. 创建一个长度为10的随机向量,并将其排序 (★★☆)¶
(提示: sort
)
# Z = np.random.random(10)
# Z.sort()
# print (Z)
41.对于一个小数组,如何用比 np.sum
更快的方式对其求和?(★★☆)¶
(提示: np.add.reduce
)
# Z = np.arange(10)
# np.add.reduce(Z)
42. 对于两个随机数组A和B,检查它们是否相等(★★☆)¶
(提示: np.allclose, np.array_equal
)
# A = np.random.randint(0,2,5)
# B = np.random.randint(0,2,5)
# # Assuming identical shape of the arrays and a tolerance for the comparison of values
# equal = np.allclose(A,B)
# print(equal)
# # 方法2
# # Checking both the shape and the element values, no tolerance (values have to be exactly equal)
# equal = np.array_equal(A,B)
# print(equal)
43. 创建一个只读数组(read-only) (★★☆)¶
(提示: flags.writeable
)
# 使用如下过程实现
Z = np.zeros(10)
Z.flags.writeable = False
Z[0] = 1
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-54-6fd4c6570dd1> in <module>()
1 Z = np.zeros(10)
2 Z.flags.writeable = False
----> 3 Z[0] = 1
ValueError: assignment destination is read-only
44. 将笛卡尔坐标下的一个10x2
的矩阵转换为极坐标形式(★★☆)¶
(hint: np.sqrt, np.arctan2
)
# Z = np.random.random((10,2))
# X,Y = Z[:,0], Z[:,1]
# R = np.sqrt(X**2+Y**2)
# T = np.arctan2(Y,X)
# print (R)
# print (T)
45. 创建一个长度为10的向量,并将向量中最大值替换为1 (★★☆)¶
(提示: argmax
)
# Z = np.random.random(10)
# Z[Z.argmax()] = 0
# print (Z)
46. 创建一个结构化数组,并实现 x
和 y
坐标覆盖 [0,1]x[0,1]
区域 (★★☆)¶
(提示: np.meshgrid
)
# Z = np.zeros((5,5), [('x',float),('y',float)])
# Z['x'], Z['y'] = np.meshgrid(np.linspace(0,1,5),
# np.linspace(0,1,5))
# print(Z)
47. 给定两个数组X
和Y
,构造Cauchy矩阵C (Cij =1/(xi - yj))
¶
(提示: np.subtract.outer
)
# X = np.arange(8)
# Y = X + 0.5
# C = 1.0 / np.subtract.outer(X, Y)
# print(np.linalg.det(C))
48. 打印每个numpy标量类型的最小值和最大值? (★★☆)¶
(提示: np.iinfo, np.finfo, eps
)
# for dtype in [np.int8, np.int32, np.int64]:
# print(np.iinfo(dtype).min)
# print(np.iinfo(dtype).max)
# for dtype in [np.float32, np.float64]:
# print(np.finfo(dtype).min)
# print(np.finfo(dtype).max)
# print(np.finfo(dtype).eps)
49. 如何打印一个数组中的所有数值? (★★☆)¶
(提示: np.set_printoptions
)
# np.set_printoptions(threshold=np.nan)
# Z = np.zeros((16,16))
# print (Z)
50. 给定标量时,如何找到数组中最接近标量的值?(★★☆)¶
(提示: argmin
)
# Z = np.arange(100)
# v = np.random.uniform(0,100)
# index = (np.abs(Z-v)).argmin()
# print (Z[index])
51. 创建一个表示位置(x,y)
和颜色(r,g,b)
的结构化数组(★★☆)¶
(提示: dtype
)
# Z = np.zeros(10, [ ('position', [ ('x', float, 1),
# ('y', float, 1)]),
# ('color', [ ('r', float, 1),
# ('g', float, 1),
# ('b', float, 1)])])
# print (Z)
52. 对一个表示坐标形状为(100,2)的随机向量,找到点与点的距离(★★☆)¶
(提示: np.atleast_2d, T, np.sqrt)
# Z = np.random.random((10,2))
# X,Y = np.atleast_2d(Z[:,0], Z[:,1])
# D = np.sqrt( (X-X.T)**2 + (Y-Y.T)**2)
# print (D)
# # 方法2
# # Much faster with scipy
# import scipy
# # Thanks Gavin Heverly-Coulson (#issue 1)
# import scipy.spatial
# D = scipy.spatial.distance.cdist(Z,Z)
# print (D)
53. 如何将32位的浮点数(float
)转换为对应的整数(integer
)?¶
(提示: astype(copy=False)
)
# Z = np.arange(10, dtype=np.int32)
# Z = Z.astype(np.float32, copy=False)
# print (Z)
55. 对于numpy
数组,enumerate
的等价操作是什么?(★★☆)¶
(提示: np.ndenumerate, np.ndindex
)
# Z = np.arange(9).reshape(3,3)
# for index, value in np.ndenumerate(Z):
# print (index, value)
# for index in np.ndindex(Z.shape):
# print (index, Z[index])
56. 生成一个通用的二维Gaussian-like数组 (★★☆)¶
(提示: np.meshgrid, np.exp
)
# X, Y = np.meshgrid(np.linspace(-1,1,10), np.linspace(-1,1,10))
# D = np.sqrt(X*X+Y*Y)
# sigma, mu = 1.0, 0.0
# G = np.exp(-( (D-mu)**2 / ( 2.0 * sigma**2 ) ) )
# print (G)
57. 对一个二维数组,如何在其内部随机放置p个元素? (★★☆)¶
(提示: np.put, np.random.choice
)
# n = 10
# p = 3
# Z = np.zeros((n,n))
# np.put(Z, np.random.choice(range(n*n), p, replace=False),1)
# print (Z)
58. 减去一个矩阵中的每一行的平均值 (★★☆)¶
(提示: mean(axis=,keepdims=)
)
# X = np.random.rand(5, 10)
# # Recent versions of numpy
# Y = X - X.mean(axis=1, keepdims=True)
# print(Y)
# # 方法2
# # Older versions of numpy
# Y = X - X.mean(axis=1).reshape(-1, 1)
# print (Y)
59. 如何通过第n列对一个数组进行排序? (★★☆)¶
(提示: argsort
)
# Z = np.random.randint(0,10,(3,3))
# print (Z)
# print (Z[Z[:,1].argsort()])
60. 如何检查一个二维数组是否有空列?(★★☆)¶
(提示: any, ~
)
# Z = np.random.randint(0,3,(3,10))
# print ((~Z.any(axis=0)).any())
61. 从数组中的给定值中找出最近的值 (★★☆)¶
(提示: np.abs, argmin, flat
)
# Z = np.random.uniform(0,1,10)
# z = 0.5
# m = Z.flat[np.abs(Z - z).argmin()]
# print (m)
62. 如何用迭代器(iterator
)计算两个分别具有形状(1,3)和(3,1)的数组? (★★☆)¶
(提示: np.nditer
)
# A = np.arange(3).reshape(3,1)
# B = np.arange(3).reshape(1,3)
# it = np.nditer([A,B,None])
# for x,y,z in it:
# z[...] = x + y
# print (it.operands[2])
63. 创建一个具有name
属性的数组类(★★☆)¶
(提示: class
方法)
# class NamedArray(np.ndarray):
# def __new__(cls, array, name="no name"):
# obj = np.asarray(array).view(cls)
# obj.name = name
# return obj
# def __array_finalize__(self, obj):
# if obj is None: return
# self.info = getattr(obj, 'name', "no name")
# Z = NamedArray(np.arange(10), "range_10")
# print (Z.name)
64. 考虑一个给定的向量,如何对由第二个向量索引的每个元素加1(小心重复的索引)? (★★★)¶
(提示: np.bincount | np.add.at
)
# Z = np.ones(10)
# I = np.random.randint(0,len(Z),20)
# Z += np.bincount(I, minlength=len(Z))
# print(Z)
# # 方法2
# np.add.at(Z, I, 1)
# print(Z)
65. 根据索引列表(I
),如何将向量(X
)的元素累加到数组(F
)? (★★★)¶
(提示: np.bincount
)
# X = [1,2,3,4,5,6]
# I = [1,3,9,3,4,1]
# F = np.bincount(I,X)
# print (F)
66. 考虑一个(dtype=ubyte)
的 (w,h,3)
图像,计算其唯一颜色的数量(★★★)¶
(提示: np.unique
)
# w,h = 16,16
# I = np.random.randint(0,2,(h,w,3)).astype(np.ubyte)
# #Note that we should compute 256*256 first.
# #Otherwise numpy will only promote F.dtype to 'uint16' and overfolw will occur
# F = I[...,0]*(256*256) + I[...,1]*256 +I[...,2]
# n = len(np.unique(F))
# print (n)
67. 考虑一个四维数组,如何一次性计算出最后两个轴(axis
)的和? (★★★)¶
(提示: sum(axis=(-2,-1))
)
# A = np.random.randint(0,10,(3,4,3,4))
# # solution by passing a tuple of axes (introduced in numpy 1.7.0)
# sum = A.sum(axis=(-2,-1))
# print (sum)
# # 方法2
# sum = A.reshape(A.shape[:-2] + (-1,)).sum(axis=-1)
# print (sum)
68. 考虑一个一维向量D
,如何使用相同大小的向量S
来计算D
子集的均值?(★★★)¶
(提示: np.bincount
)
# D = np.random.uniform(0,1,100)
# S = np.random.randint(0,10,100)
# D_sums = np.bincount(S, weights=D)
# D_counts = np.bincount(S)
# D_means = D_sums / D_counts
# print (D_means)
# # 方法2
# import pandas as pd
# print(pd.Series(D).groupby(S).mean())
69. 如何获得点积 dot prodcut
的对角线? (★★★)¶
(提示: np.diag
)
# A = np.random.uniform(0,1,(5,5))
# B = np.random.uniform(0,1,(5,5))
# # slow version
# np.diag(np.dot(A, B))
## 方法2
# # Fast version
# np.sum(A * B.T, axis=1)
## 方法3
# # Faster version
# np.einsum("ij,ji->i", A, B)
70. 考虑一个向量[1,2,3,4,5]
,如何建立一个新的向量,在这个新向量中每个值之间有3个连续的零?(★★★)¶
(提示: array[::4]
)
# Z = np.array([1,2,3,4,5])
# nz = 3
# Z0 = np.zeros(len(Z) + (len(Z)-1)*(nz))
# Z0[::nz+1] = Z
# print (Z0)
71. 考虑一个维度(5,5,3)的数组,如何将其与一个(5,5)的数组相乘?(★★★)¶
(提示: array[:, :, None]
)
# A = np.ones((5,5,3))
# B = 2*np.ones((5,5))
# print (A * B[:,:,None])
72. 如何对一个数组中任意两行做交换? (★★★)¶
(提示: array[[]] = array[[]]
)
# A = np.arange(25).reshape(5,5)
# A[[0,1]] = A[[1,0]]
# print (A)
73. 考虑一个可以描述10个三角形的triplets,找到可以分割全部三角形的line segment¶
Consider a set of 10 triplets describing 10 triangles (with shared vertices), find the set of unique line segments composing all the triangles (★★★)
(提示: repeat, np.roll, np.sort, view, np.unique
)
# faces = np.random.randint(0,100,(10,3))
# F = np.roll(faces.repeat(2,axis=1),-1,axis=1)
# F = F.reshape(len(F)*3,2)
# F = np.sort(F,axis=1)
# G = F.view( dtype=[('p0',F.dtype),('p1',F.dtype)] )
# G = np.unique(G)
# print (G)
74. 给定一个二进制的数组C
,如何产生一个数组A
满足np.bincount(A)==C
(★★★)¶
(提示: np.repeat
)
# C = np.bincount([1,1,2,3,4,4,6])
# A = np.repeat(np.arange(len(C)), C)
# print (A)
75. 如何通过滑动窗口计算一个数组的平均数? (★★★)¶
(提示: np.cumsum
)
# def moving_average(a, n=3) :
# ret = np.cumsum(a, dtype=float)
# ret[n:] = ret[n:] - ret[:-n]
# return ret[n - 1:] / n
# Z = np.arange(20)
# print(moving_average(Z, n=3))
76. Consider a one-dimensional array Z, build a two-dimensional array whose first row is (Z[0],Z[1],Z[2]) and each subsequent row is shifted by 1 (last row should be (Z[-3],Z[-2],Z[-1]) (★★★)¶
(提示: from numpy.lib import stride_tricks
)
# from numpy.lib import stride_tricks
# def rolling(a, window):
# shape = (a.size - window + 1, window)
# strides = (a.itemsize, a.itemsize)
# return stride_tricks.as_strided(a, shape=shape, strides=strides)
# Z = rolling(np.arange(10), 3)
# print (Z)
77. 如何对布尔值取反,或者原位(in-place
)改变浮点数的符号(sign
)?(★★★)¶
(提示: np.logical_not, np.negative
)
# Z = np.random.randint(0,2,100)
# np.logical_not(Z, out=Z)
# Z = np.random.uniform(-1.0,1.0,100)
# np.negative(Z, out=Z)
78. 考虑两组点集P0
和P1
去描述一组线(二维)和一个点p
,如何计算点p
到每一条线 i (P0[i],P1[i])
的距离?(★★★)¶
# def distance(P0, P1, p):
# T = P1 - P0
# L = (T**2).sum(axis=1)
# U = -((P0[:,0]-p[...,0])*T[:,0] + (P0[:,1]-p[...,1])*T[:,1]) / L
# U = U.reshape(len(U),1)
# D = P0 + U*T - p
# return np.sqrt((D**2).sum(axis=1))
# P0 = np.random.uniform(-10,10,(10,2))
# P1 = np.random.uniform(-10,10,(10,2))
# p = np.random.uniform(-10,10,( 1,2))
# print (distance(P0, P1, p))
79.考虑两组点集P0
和P1
去描述一组线(二维)和一组点集P
,如何计算每一个点 j(P[j])
到每一条线 i (P0[i],P1[i])
的距离?(★★★)¶
# # based on distance function from previous question
# P0 = np.random.uniform(-10, 10, (10,2))
# P1 = np.random.uniform(-10,10,(10,2))
# p = np.random.uniform(-10, 10, (10,2))
# print (np.array([distance(P0,P1,p_i) for p_i in p]))
80.Consider an arbitrary array, write a function that extract a subpart with a fixed shape and centered on a given element (pad with a fill
value when necessary) (★★★)¶
(hint: minimum, maximum)
# Z = np.random.randint(0,10,(10,10))
# shape = (5,5)
# fill = 0
# position = (1,1)
# R = np.ones(shape, dtype=Z.dtype)*fill
# P = np.array(list(position)).astype(int)
# Rs = np.array(list(R.shape)).astype(int)
# Zs = np.array(list(Z.shape)).astype(int)
# R_start = np.zeros((len(shape),)).astype(int)
# R_stop = np.array(list(shape)).astype(int)
# Z_start = (P-Rs//2)
# Z_stop = (P+Rs//2)+Rs%2
# R_start = (R_start - np.minimum(Z_start,0)).tolist()
# Z_start = (np.maximum(Z_start,0)).tolist()
# R_stop = np.maximum(R_start, (R_stop - np.maximum(Z_stop-Zs,0))).tolist()
# Z_stop = (np.minimum(Z_stop,Zs)).tolist()
# r = [slice(start,stop) for start,stop in zip(R_start,R_stop)]
# z = [slice(start,stop) for start,stop in zip(Z_start,Z_stop)]
# R[r] = Z[z]
# print (Z)
# print (R)
81. 考虑一个数组Z = [1,2,3,4,5,6,7,8,9,10,11,12,13,14]
,如何生成一个数组R = [[1,2,3,4], [2,3,4,5], [3,4,5,6], ...,[11,12,13,14]]
? (★★★)¶
(提示: stride_tricks.as_strided
)
# Z = np.arange(1,15,dtype=np.uint32)
# R = stride_tricks.as_strided(Z,(11,4),(4,4))
# print (R)
82. 计算一个矩阵的秩(★★★)¶
(提示: np.linalg.svd
)
# Z = np.random.uniform(0,1,(10,10))
# U, S, V = np.linalg.svd(Z) # Singular Value Decomposition
# rank = np.sum(S > 1e-10)
# print (rank)
83. 如何找到一个数组中出现频率最高的值?¶
(提示: np.bincount, argmax
)
# Z = np.random.randint(0,10,50)
# print (np.bincount(Z).argmax())
84. 从一个10x10
的矩阵中提取出连续的3x3
区块(★★★)¶
(提示: stride_tricks.as_strided
)
# Z = np.random.randint(0,5,(10,10))
# n = 3
# i = 1 + (Z.shape[0]-3)
# j = 1 + (Z.shape[1]-3)
# C = stride_tricks.as_strided(Z, shape=(i, j, n, n), strides=Z.strides + Z.strides)
# print (C)
85. 创建一个满足 Z[i,j] == Z[j,i]
的子类 (★★★)¶
(提示: class
方法)
# class Symetric(np.ndarray):
# def __setitem__(self, index, value):
# i,j = index
# super(Symetric, self).__setitem__((i,j), value)
# super(Symetric, self).__setitem__((j,i), value)
# def symetric(Z):
# return np.asarray(Z + Z.T - np.diag(Z.diagonal())).view(Symetric)
# S = symetric(np.random.randint(0,10,(5,5)))
# S[2,3] = 42
# print (S)
86. 考虑p个 nxn
矩阵和一组形状为(n,1)
的向量,如何直接计算p个矩阵的乘积(n,1)
?(★★★)¶
(提示: np.tensordot
)
# p, n = 10, 20
# M = np.ones((p,n,n))
# V = np.ones((p,n,1))
# S = np.tensordot(M, V, axes=[[0, 2], [0, 1]])
# print (S)
# It works, because:
# M is (p,n,n)
# V is (p,n,1)
# Thus, summing over the paired axes 0 and 0 (of M and V independently),
# and 2 and 1, to remain with a (n,1) vector.
87. 对于一个16x16
的数组,如何得到一个区域(block-sum
)的和(区域大小为4x4
)? (★★★)¶
(提示: np.add.reduceat
)
# Z = np.ones((16,16))
# k = 4
# S = np.add.reduceat(np.add.reduceat(Z, np.arange(0, Z.shape[0], k), axis=0),
# np.arange(0, Z.shape[1], k), axis=1)
# print (S)
88. 如何利用numpy
数组实现Game of Life? (★★★)¶
(提示: Game of Life)
# def iterate(Z):
# # Count neighbours
# N = (Z[0:-2,0:-2] + Z[0:-2,1:-1] + Z[0:-2,2:] +
# Z[1:-1,0:-2] + Z[1:-1,2:] +
# Z[2: ,0:-2] + Z[2: ,1:-1] + Z[2: ,2:])
# # Apply rules
# birth = (N==3) & (Z[1:-1,1:-1]==0)
# survive = ((N==2) | (N==3)) & (Z[1:-1,1:-1]==1)
# Z[...] = 0
# Z[1:-1,1:-1][birth | survive] = 1
# return Z
# Z = np.random.randint(0,2,(50,50))
# for i in range(100): Z = iterate(Z)
# print (Z)
89. 如何找到一个数组的第n个最大值? (★★★)¶
(提示: np.argsort | np.argpartition
)
# Z = np.arange(10000)
# np.random.shuffle(Z)
# n = 5
# # Slow
# print (Z[np.argsort(Z)[-n:]])
# # 方法2
# # Fast
# print (Z[np.argpartition(-Z,n)[:n]])
90. 给定任意个数向量,创建笛卡尔积(每一个元素的每一种组合)(★★★)¶
(提示: np.indices
)
# def cartesian(arrays):
# arrays = [np.asarray(a) for a in arrays]
# shape = (len(x) for x in arrays)
# ix = np.indices(shape, dtype=int)
# ix = ix.reshape(len(arrays), -1).T
# for n, arr in enumerate(arrays):
# ix[:, n] = arrays[n][ix[:, n]]
# return ix
# print (cartesian(([1, 2, 3], [4, 5], [6, 7])))
91. 如何从一个正常数组创建记录数组(record array
)? (★★★)¶
(提示: np.core.records.fromarrays
)
# Z = np.array([("Hello", 2.5, 3),
# ("World", 3.6, 2)])
# R = np.core.records.fromarrays(Z.T,
# names='col1, col2, col3',
# formats = 'S8, f8, i8')
# print (R)
92. 考虑一个大向量Z
, 用三种不同的方法计算它的立方(★★★)¶
(提示: np.power, \*, np.einsum
)
# x = np.random.rand()
# np.power(x,3)
## 方法2
# x*x*x
## 方法3
# np.einsum('i,i,i->i',x,x,x)
93. 考虑两个形状分别为(8,3)
和(2,2)
的数组A
和B
. 如何在数组A
中找到满足包含B
中元素的行?(不考虑B
中每行元素顺序)? (★★★)¶
(提示: np.where
)
# A = np.random.randint(0,5,(8,3))
# B = np.random.randint(0,5,(2,2))
# C = (A[..., np.newaxis, np.newaxis] == B)
# rows = np.where(C.any((3,1)).all(1))[0]
# print (rows)
94. 考虑一个10x3
的矩阵,分解出有不全相同值的行 (如 [2,2,3]
) (★★★)¶
# Z = np.random.randint(0,5,(10,3))
# print (Z)
# # solution for arrays of all dtypes (including string arrays and record arrays)
# E = np.all(Z[:,1:] == Z[:,:-1], axis=1)
# U = Z[~E]
# print (U)
# # 方法2
# # soluiton for numerical arrays only, will work for any number of columns in Z
# U = Z[Z.max(axis=1) != Z.min(axis=1),:]
# print (U)
95. 将一个整数向量转换为matrix binary的表现形式 (★★★)¶
(提示: np.unpackbits
)
# I = np.array([0, 1, 2, 3, 15, 16, 32, 64, 128])
# B = ((I.reshape(-1,1) & (2**np.arange(8))) != 0).astype(int)
# print(B[:,::-1])
# # 方法2
# print (np.unpackbits(I[:, np.newaxis], axis=1))
96. 给定一个二维数组,如何提取出唯一的(unique
)行?(★★★)¶
(提示: np.ascontiguousarray
)
# Z = np.random.randint(0,2,(6,3))
# T = np.ascontiguousarray(Z).view(np.dtype((np.void, Z.dtype.itemsize * Z.shape[1])))
# _, idx = np.unique(T, return_index=True)
# uZ = Z[idx]
# print (uZ)
# A = np.random.uniform(0,1,10)
# B = np.random.uniform(0,1,10)
# print ('sum')
# print (np.einsum('i->', A))# np.sum(A)
# print ('A * B')
# print (np.einsum('i,i->i', A, B)) # A * B
# print ('inner')
# print (np.einsum('i,i', A, B)) # np.inner(A, B)
# print ('outer')
# print (np.einsum('i,j->ij', A, B)) # np.outer(A, B)
98. 考虑一个由两个向量描述的路径(X,Y)
,如何用等距样例(equidistant samples
)对其进行采样(sample
)? (★★★)¶
Considering a path described by two vectors (X,Y), how to sample it using equidistant samples
(提示: np.cumsum, np.interp
)
# phi = np.arange(0, 10*np.pi, 0.1)
# a = 1
# x = a*phi*np.cos(phi)
# y = a*phi*np.sin(phi)
# dr = (np.diff(x)**2 + np.diff(y)**2)**.5 # segment lengths
# r = np.zeros_like(x)
# r[1:] = np.cumsum(dr) # integrate path
# r_int = np.linspace(0, r.max(), 200) # regular spaced path
# x_int = np.interp(r_int, r, x) # integrate path
# y_int = np.interp(r_int, r, y)
99. Given an integer n and a 2D array X, select from X the rows which can be interpreted as draws from a multinomial distribution with n degrees, i.e., the rows which only contain integers and which sum to n. (★★★)¶
(提示: np.logical_and.reduce, np.mod
)
# X = np.asarray([[1.0, 0.0, 3.0, 8.0],
# [2.0, 0.0, 1.0, 1.0],
# [1.5, 2.5, 1.0, 0.0]])
# n = 4
# M = np.logical_and.reduce(np.mod(X, 1) == 0, axis=-1)
# M &= (X.sum(axis=-1) == n)
# print (X[M])
100. 对于一个一维数组X
,计算它boostrapped之后的95%置信区间的平均值。¶
(Compute bootstrapped 95% confidence intervals for the mean of a 1D array X,i.e. resample the elements of an array with replacement N times, compute the mean of each sample, and then compute percentiles over the means). (★★★)
(提示: np.percentile
)
# X = np.random.randn(100) # random 1D array
# N = 1000 # number of bootstrap samples
# idx = np.random.randint(0, X.size, (N, X.size))
# means = X[idx].mean(axis=1)
# confint = np.percentile(means, [2.5, 97.5])
# print (confint)