master
/ 6神经网络学习.ipynb

6神经网络学习.ipynb @96fc089

96fc089
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# 神经网络学习"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### 人工智能是什么呢?"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "人工智能被分为强人工智能和弱人工智能:\n",
    "+ 强人工智能:在各方面都能够和人类比肩的人工智能,“一种宽泛的心理能力,能够进行思考、计划、解决问题、抽象思理解复杂理念、快速学习和从经验中学习等”\n",
    "+ 弱人工智能:擅长于单个方面的人工智能,比如AlphaGo。"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "fragment"
    }
   },
   "source": [
    "弱人工智能,本质上还是人类为计算机设计的算法,一系列定义良好的计算过程,能够将输入数据转化成输出数据。"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "神经网络模拟人脑神经元的连接来达到学习功能,通过逐层抽象将输入数据逐层映射为概念等高等语义。"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "fragment"
    }
   },
   "source": [
    "<div align=\"center\">\n",
    "<img src=\"https://imgbed.momodel.cn/alg2.png\" width = 600>"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "skip"
    }
   },
   "source": [
    "<br>"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 1 人脑神经机制"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "fragment"
    }
   },
   "source": [
    "首先,人脑神经元的活动和学习机制是怎样的呢?"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "\n",
       "        <iframe\n",
       "            width=\"800\"\n",
       "            height=\"600\"\n",
       "            src=\"https://view.officeapps.live.com/op/view.aspx?src=https://files.momodel.cn/nn_brain_3.pptx\"\n",
       "            frameborder=\"0\"\n",
       "            allowfullscreen\n",
       "        ></iframe>\n",
       "        "
      ],
      "text/plain": [
       "<IPython.lib.display.IFrame at 0x7fb8fceea7d0>"
      ]
     },
     "execution_count": 2,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "from IPython.display import IFrame\n",
    "src = 'https://files.momodel.cn/nn_brain_3.pptx'\n",
    "IFrame('https://view.officeapps.live.com/op/view.aspx?src='+src, width=800, height=600)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "skip"
    }
   },
   "source": [
    "神经学假说认为:"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "skip"
    }
   },
   "source": [
    "<table>\n",
    "    <tr>\n",
    "        <td ><center><img src=\"http://imgbed.momodel.cn/微信图片_20200114133721.png\"/></center></td>\n",
    "        <td><center><img src=\"http://imgbed.momodel.cn/微信图片_20200114133731.png\"/></center></td>\n",
    "        <td><center><img src=\"http://imgbed.momodel.cn/微信图片_20200114133746.png\"/></center></td>\n",
    "    </tr>\n",
    "</table>\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "skip"
    }
   },
   "source": [
    "高层的特征是低层特征的组合,从低层到高层的特征表示越来越抽象,越来越能表现语义。\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "skip"
    }
   },
   "source": [
    "人工智能中神经网络正是体现“逐层抽象、渐进学习”机制的学习模型。"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "skip"
    }
   },
   "source": [
    "<img src=\"http://imgbed.momodel.cn/微信图片_20200114133755.png\"/>\n",
    "\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "skip"
    }
   },
   "source": [
    "<br>"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "skip"
    }
   },
   "source": [
    "人眼在辨识图片时,会先提取边缘特征,再识别部件,最后再得到最高层的模式。"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "skip"
    }
   },
   "source": [
    "<img src=\"http://imgbed.momodel.cn//20200103102429.png\" width=500>"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "神经元的功能:\n",
    "+ 物理反应:将前序神经元所传递过来的信息按联结权重累加\n",
    "\n",
    "$ 神经元i获得信息 = 神经元k信息 \\times 联结权重k + 神经元l信息 \\times 联结权重l + 神经元m信息 \\times 联结权重m $\n",
    "\n",
    "+ 化学反应:对神经元i获得的信息施以一个非线性变换(通过激活函数),激活若干信息、而非“来者不拒”\n",
    "+ 信息流通:将神经元非线性变换后所得的信息继续向后传递"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "skip"
    }
   },
   "source": [
    "<br>"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 2  感知机模型"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "slide"
    }
   },
   "source": [
    "### 2.1 感知机模型:\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "fragment"
    }
   },
   "source": [
    "\n",
    "<table>\n",
    "    <tr>\n",
    "        <td ><img src=\"http://imgbed.momodel.cn/感知器模型.png\" width=300/></td>\n",
    "        <td><img src=\"http://imgbed.momodel.cn//20200208141322.png\" width=400></td>\n",
    "    </tr>\n",
    "</table>"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "fragment"
    }
   },
   "source": [
    "**输入项**:3个,$x_1,x_2,x_3$  \n",
    "**神经元**:1个,用圆圈表示  \n",
    "**权重**:每个输入项均通过权重与神经元相连(比如 $w_i$ 是 $x_i$ 与神经元相连的权重)    \n",
    "**输出**:1个\n",
    "\n",
    "\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "fragment"
    }
   },
   "source": [
    "**工作方法**:\n",
    "+ 计算输入项传递给神经元的信息加权总和,即:$y_{sum} = w_1x_1+w_2x_2+w_3x_3$\n",
    "+ 如果 $y_{sum}$ 大于某个预定阀值(比如 0.5),则输出为 1,否则为 0 。\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### 2.2 激活函数"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "fragment"
    }
   },
   "source": [
    "在输出的判断上,其实不仅可以简单的按照阈值来判断,可以通过一个函数来进行计算,这个函数称为**激活函数**。\n",
    "\n",
    "常见的激活函数有: sigmoid,tanh,relu 等。\n",
    "\n",
    "下面我们看看这些激活函数的曲线图。"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {
    "slideshow": {
     "slide_type": "fragment"
    }
   },
   "outputs": [],
   "source": [
    "import numpy as np\n",
    "import matplotlib.pyplot as plt\n",
    "import warnings\n",
    "warnings.filterwarnings(\"ignore\")\n",
    "\n",
    "\n",
    "def plot_activation_function(activation_function):\n",
    "    \"\"\"\n",
    "    绘制激活函数\n",
    "    :param activation_function: 激活函数名\n",
    "    :return:\n",
    "    \"\"\"\n",
    "    x = np.arange(-10, 10, 0.1)\n",
    "    y_activation_function = activation_function(x)\n",
    "\n",
    "    # 绘制坐标轴\n",
    "    ax = plt.gca()\n",
    "    ax.spines['right'].set_color('none')\n",
    "    ax.spines['top'].set_color('none')\n",
    "    ax.xaxis.set_ticks_position('bottom')\n",
    "    ax.yaxis.set_ticks_position('left')\n",
    "    ax.spines['bottom'].set_position(('data', 0))\n",
    "    ax.spines['left'].set_position(('data', 0))\n",
    "\n",
    "    # 绘制曲线图\n",
    "    plt.plot(x, y_activation_function)\n",
    "    \n",
    "    # 展示函数图像\n",
    "    plt.show()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "#### 1.sigmoid函数\n",
    "\n",
    "Sigmoid函数是一个在生物学中常见的S型函数也称为S型生长曲线在信息科学中由于其单增以及反函数单增等性质Sigmoid函数常被用作神经网络的阈值函数将变量映射到0,1之间"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "fragment"
    }
   },
   "source": [
    "$$ f(x) = \\frac{1}{1+e^{-x}}$$"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "slideshow": {
     "slide_type": "fragment"
    }
   },
   "outputs": [],
   "source": [
    "def sigmoid(x):\n",
    "    \"\"\"\n",
    "    sigmoid函数\n",
    "    :param x: np.array 格式数据\n",
    "    :return: sigmoid 函数\n",
    "    \"\"\"\n",
    "    y = \n",
    "    \n",
    "    return y\n",
    "\n",
    "# 绘制 sigmoid 函数图像\n",
    "plot_activation_function(sigmoid)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWQAAADyCAYAAAB6U7/KAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xl4VHWe7/H3yQ4hBBIIQhKWUBhCIIBUJC6NoLKIdkanEdHbKm37xAXbnsdutefONK32tPI8Xp32Nt0zFweX23qJS9sGpyERaHF63CBsQsISMIQkkJCEJWHJVvW7f1SICSSYQKpOpfJ5PU+eqnPOr+p8OXX45JdfncUyxiAiIvYLsrsAERHxUCCLiPgJBbKIiJ9QIIuI+AkFsoiIn1Agi4j4CQWyiIifUCCLiPgJBbKIiJ8I6WZ7ndYnfmvevHnk5ubaXYZIR6yuNFIPWQJGdXW13SWIXBYFsoiIn1Agi4j4CQWyiIifUCCLiPgJBbKIiJ9QIIvPPfDAA8TFxTFx4sQOlxtjePzxx3E4HKSlpbF161YfVyhiDwWy+NzixYsverzw2rVrKSoqoqioiBUrVvDII4/4sDoR+3T3xBCRyzZjxgwOHjzY6fKcnBzuu+8+LMsiIyODEydOcOTIEYYPH+67IqUdYwyNLjf1TW4amlzUN7mpb3ZR3/K82eWmyW1wud00uQwut6HJ5cblNjS7Dc2u85a53bhcBgO4jcEYz1lnpuW525iW6ZZ5gNv97Tx3y63nvn2twW3atG9zCptpcz5b+/l0Mr/jRst+kEZYiHf7sApk8Tvl5eUkJia2TickJFBeXt5hIK9YsYIVK1YAUFVV5bMae6v6JhdVdQ0crWugqq6eqroGjp9poq6+idqzzdTWN1Fb30RdfTO1Zz2PZ5s8wev2wXm6lgVBloXV8txqeR5kWZ7pludYF85r294z32r3vq3P262v4xPo2rVveW58cKKyAll6taysLLKysgBwOp02V2M/t9tw6NgZDlSdoqTmDIeOfftTWVtPXX1zh6/rFxrMwH4hDIwIJSoihJjIMEbHRjIgIoT+ocFEhAYTERpERGgw4aHB9Ds3HeJZFhpsERJsERIURHCQRWiw5zEk6Nv5nkeLkOAgQoIsgiyL4KD24dvXKZDF78THx1NaWto6XVZWRnx8vI0V+SeX27C3oo4tJccoPFLHnopa9lbUcabR1domMiyYkbGRJA2J5HrHEIZGhTN0QDhDB3oe46LCGRwZRmiwvk7yBwpk8TuZmZksX76cRYsW8dVXXxEdHa3xYzy9312HT/L5gRo2FR9j88FjrT3eQf1DGX9FFAudiUwYPhDHsAGMiulPTGSYep69iAJZfO7uu+9m48aNVFdXk5CQwLPPPktTUxMADz/8MPPnz2fNmjU4HA769+/P66+/bnPF9nG5DZ/trya3oIINuyuprG0AYOzQSG5LG8HVYwbjHBVDwuB+Ct4AYBnTrYFqXX5T/JbT6SQ/P9/uMnpEUWUd720p48Nt5RytayAyLJgbkodyc8owZlw5lCEDwu0uUbqnS78t1UMW8RPGGD7dV8XK/y7mb0XVhARZzBofxw+uimdmchwRocF2lyhepkAWsZkxhvW7j/K/8vayt7KOuKhwnpybzKL0RGLVE+5TFMgiNtp88BjL1u5hS8lxxgyJ5KU7J/P9ySO8fgKC+CcFsogNTp5p4jdrCnk3v4y4qHCev2MSdzoTdPhZH6dAFvGxNTuPsDSngONnGnnohiT+4aYr6Rem8WFRIIv4TH2Ti2c/KmDVplImxUfzxo/SmRgfbXdZ4kcUyCI+UFJzmkff3krB4VoemTmWn82+khANT8h5FMgiXvblNzVk/d98LMti5f1ObkoZZndJ4qcUyCJelLvrCI9nb2dkTH9eX5xOYkx/u0sSP6ZAFvGSt74sYWnOLqYkDuK1xekM6h9md0ni5xTIIl7wxy8O8sucAm4cH8fv77lKR1FIlyiQRXpYzvZylq4u4OaUOP7th9N0bLF0mfYUkR60YXclT7y7g+ljYlh+z1UKY+kW7S0iPWTboeM8+vZWUkcM5D/uT9fFgKTbFMgiPeBoXT2PvLWVuIHhvPGjqxkQrtFA6T7tNSKXqbHZzZK3t3LibCMfPHIdMZE6mkIujQJZ5DL95i+FbD54nFcWTWHCiIF2lyO9mIYsRC7Df359mDe/KOHB68fwd1N0I1a5PApkkUt0tLaef/5wF5MTB/GLW8bbXY4EAAWyyCUwxvCLD3ZyttHFS3dO1oWCpEdoLxK5BO/ml/LXPUd5et54HHED7C5HAoQCWaSbyo6f4bmPCrkmKZbF1462uxwJIApkkW567qNCDPDinWkEBXXp7u4iXaJAFumGjXuP8nFhJT+5cRwJg3UpTelZCmSRLmpsdvPcR4WMGRLJA9ePtrscCUAKZJEueu2zYr6pPs2vvj+B8BBdp0J6ngJZpAsqTtbzvzcUcXPKMGYmx9ldjgQoBbJIF/zrun00uwxLb5tgdykSwBTIIt+huPo0728t457pIxkZqy/yxHsUyCLf4bfr9xEWHMSjs8baXYoEOAWy2CI3N5fk5GQcDgfLli27YPmhQ4eYNWsWU6dOJS0tjTVr1thQJeytqGP1jsPcf+1o4qIibKlB+g4Fsvicy+ViyZIlrF27lsLCQlatWkVhYWG7Nv/yL//CwoUL2bZtG9nZ2Tz66KO21PrSx3sZEBbCwzck2bJ+6VsUyOJzmzZtwuFwkJSURFhYGIsWLSInJ6ddG8uyqK2tBeDkyZOMGDHC53V+XXaCjwsrefB7SQzqr4vOi/fpAvXic+Xl5SQmJrZOJyQk8NVXX7Vr88wzzzBnzhx+97vfcfr0adavX+/rMln+1/1E9wvVSSDiM+ohi19atWoVixcvpqysjDVr1nDvvffidrsvaLdixQqcTidOp5OqqqoeW/+BqlOs213JfdeMIioitMfeV+RiFMjic/Hx8ZSWlrZOl5WVER/f/m4bK1euZOHChQBcc8011NfXU11dfcF7ZWVlkZ+fT35+PkOHDu2xGv/jb98QGhzE/bqam/iQAll8Lj09naKiIoqLi2lsbCQ7O5vMzMx2bUaOHMmGDRsA2L17N/X19T0auBdztK6eP20p585pCQwZEO6TdYqAAllsEBISwvLly5k7dy4pKSksXLiQ1NRUli5dyurVqwF46aWXePXVV5k8eTJ33303b7zxBpblm0tdvvn5QZrcbh78no6sEN+yjDHdad+txiK+5HQ6yc/Pv6z3ONXQzLUvbOA6xxD+7YfTeqgyEbrUm1APWaSNdzeXUlvfTNYM9Y7F9xTIIi3cbsMfvyxh2qjBTB052O5ypA9SIIu0+OxANcXVp7k3Y5TdpUgfpUAWafHHL0qIiQzjlklX2F2K9FEKZBHgyMmzrN9dyV3pibobiNhGgSwCrPrqEAa45+qRdpcifZgCWfq8xmY3qzaXMis5jsQYXYBe7KNAlj7v48IKquoa9GWe2E6BLH1e9qZSEgb3Y8aVvjk1W6QzCmTp08pPnOWzA9UsmJZAcJBvTs0W6YwCWfq0D7aUYQz84KoEu0sRUSBL32WM4f2tZVyTFKsv88QvKJClz9p88DglNWdYME29Y/EPCmTps97fUkpkWLDOzBO/oUCWPulMYzN/+foIt6YNp3+Ybi0p/kGBLH3S2p0VnG50sWBa4nc3FvERBbL0SR9sK2NUbH/SR+sym+I/FMjS5xytreeLAzX83eQRPrstlEhXKJClz/nPr4/gNpA5ZYTdpYi0o0CWPmf1jsNMGD4QR1yU3aWItKNAlj6lpOY020tPqHcsfkmBLH3KRzsOA/D9yQpk8T8KZOkzjDHkbD9M+ujBxA/qZ3c5IhdQIEufsaeijqKjp8hU71j8lAJZ+ozVOw4THGQxf9Jwu0sR6ZACWfoEYwxrdh7h2rGxxA4It7sckQ4pkKVP2FtZR0nNGeZN1IWExH8pkKVPyNtViWXB7AnD7C5FpFMKZOkT8goqmJo4iLioCLtLEemUAlkCXumxMxQeqWVuqoYrxL8pkCXg5RVUACiQxe8pkMUWubm5JCcn43A4WLZsWYdt3n33XSZMmEBqair33HPPJa/r44JKkodFMXpI5CW/h4gv6FYJ4nMul4slS5awbt06EhISSE9PJzMzkwkTJrS2KSoq4oUXXuCzzz5j8ODBHD169JLWVX2qgc0lx/jJLEdPlS/iNeohi89t2rQJh8NBUlISYWFhLFq0iJycnHZtXn31VZYsWcLgwZ4LyMfFxV3SutYXVmIMzNFwhfQCCmTxufLychITv711UkJCAuXl5e3a7Nu3j3379nHdddeRkZFBbm5uh++1YsUKnE4nTqeTqqqqC5bnFVQQP6gfqSMG9uw/QsQLNGQhfqm5uZmioiI2btxIWVkZM2bMYOfOnQwaNKhdu6ysLLKysgBwOp3tltXVN/HZ/hp+mDFKdwaRXkE9ZPG5+Ph4SktLW6fLysqIj49v1yYhIYHMzExCQ0MZM2YMV155JUVFRd1az8a9VTS63MxN1ckg0jsokMXn0tPTKSoqori4mMbGRrKzs8nMzGzX5vbbb2fjxo0AVFdXs2/fPpKSkrq1nryCCmIjw3COjump0kW8SoEsPhcSEsLy5cuZO3cuKSkpLFy4kNTUVJYuXcrq1asBmDt3LrGxsUyYMIFZs2bx4osvEhsb2+V1NDS72Li3iptThhEcpOEK6R0sY0x32nersYgvOZ1O8vPzAfhk71F+9PpmXlvs5MbxGrIQ23WpV6AesgSkjwsqiAwL5tqxQ+wuRaTLFMgScFxuw7rCSmaOjyMiNNjuckS6TIEsAWfroeNUn2rUtSuk11EgS8DJ21VBWHAQs5KH2l2KSLcokCWgGGPIK6zgWkcsURGhdpcj0i0KZAkou4/UUXrsrIYrpFdSIEtAySuowLLg5hQd6ia9jwJZAkpeQQXOUYMZGqU7S0vvo0CWgNHY7GZPRZ2GK6TXUiBLwKitbwJ0qybpvRTIEjBOnm0iZfhAEmP6212KyCVRIEtAqKpr4EyjS5falF5NgSwBYV1hJaDhCundFMgSEPIKPGfnjb8iyu5SRC6ZAll6vdr6Jj4/UM3AfqG6VZP0agpk6fU+2XOUJpchup9uESm9m/Zg6fU+LqhkyIBwCNPuLL2besjSq9U3udi49yizJ+joCun9FMjSq322v5rTOtxNAoQCWXq1vIIKosJDdKsmCQgKZOm1ml1u1u8+yqzxcYSFaFeW3k97sfRa+SXHOXZat2qSwKFAll4rr6CCsJAgZupWTRIgFMjSKxlj+Ligku85hhAZrsPdJDAokKVXKjhcS/kJ3apJAosCWXqlvIIKgiy4KSXO7lJEeowCWXqlvIIK0kfHEDtAt2qSwKFAll6nuPo0+ypPabhCAo4CWXqdvIIKAObo7DwJMApk6XXW7qpgUnw0CYN1qyYJLApksUVubi7Jyck4HA6WLVvWabs//elPWJZFfn4+AOUnzrKj9AS3TNJwhQQeBbL4nMvlYsmSJaxdu5bCwkJWrVpFYWHhBe3q6up45ZVXmD59euu83F2e4YpbJg73Wb0ivqJAFp/btGkTDoeDpKQkwsLCWLRoETk5ORe0++Uvf8nTTz9NRERE67y1O48w/oooxgyJ9GXJIj6hQBafKy8vJzExsXU6ISGB8vLydm22bt1KaWkpt956a+u8o7X1bDl0XL1jCVg651T8jtvt5oknnuCNN95oNz+voAJjYH6b8eMVK1awYsUKAKqqqnxZpkiPUyCLz8XHx1NaWto6XVZWRnx8fOt0XV0du3btYubMmQBUVFSQmZnJVT97g7FDIxk37Ns7S2dlZZGVlQWA0+n0zT9AxEs0ZCE+l56eTlFREcXFxTQ2NpKdnU1mZmbr8ujoaKqrqzl48CAHDx4kIyODP773IYXVTcyfpOEKCVwKZPG5kJAQli9fzty5c0lJSWHhwoWkpqaydOlSVq9e3eFrNpXX4zYwb6IOd5PAZRljutO+W41Fesp9r22ipOY0G38+E8uyOmzjdDpbj1cW8TMd77TnUQ9Z/N7JM018vr+aeROv6DSMRQKBAln83rrdlTS7DfN1uJsEOAWy+L21O48QP6gfaQnRdpci4lUKZPFrtfVN/K2omrmpGq6QwKdAFr/2cUEljS43t03WcIUEPgWy+LWc7eUkxvRjauIgu0sR8ToFsvit6lMNfH6ghszJIzRcIX2CAln81pqdR3C5DZmT47+7sUgAUCCL38rZfpjkYVEkXxH13Y1FAoACWfxS2fEzbCk5TuaUEXaXIuIzCmTxSx/tOAJA5mQFsvQdCmTxSznby5k6chCJMbqRqfQdCmTxO3sr6thTUafesfQ5CmTxO+9vKSUkyFIgS5+jQBa/0uRy8+dt5dyUEkfsgHC7yxHxKQWy+JVP91ZRfaqRBdMSv7uxSIBRIItfeW9LKUMGhDEzeajdpYj4nAJZ/EbNqQY27D7K7VPiCQ3Wril9j/Z68Rs52w/T7DYscCbYXYqILRTI4jfe31LGpPhoxl8x0O5SRGyhQBa/sKv8JIVHalkwTb1j6bsUyOIX3vqyhIjQIG6foiu7Sd+lQBbbnTzbRM72w/zd5Hii+4faXY6IbRTIYrsPtpZxtsnFvdeMsrsUEVspkMVWxhje+rKEyYmDmBivu0pL36ZAFlt98U0NB6pOc2+GesciCmSx1VtfljCofyi3pemu0iIKZLFNZW09HxdUstCZSERosN3liNhOgSy2eePzg7iN4X9MH2l3KSJ+QYEstqirb+KtL0u4ZeJwRsVG2l2OiF9QIIstsjeVUlffTNaMJLtLEfEbCmTxucZmN79fvxuraj8/mOVk2bJlF7R5+eWXmTBhAmlpadx0002UlJTYUKmIbymQxedytpdxohGev3cWhYWFrFq1isLCwnZtpk6dSn5+Pl9//TULFizgqaeesqlaEd9RIItPGWN4Ja+QsLPVLLphEmFhYSxatIicnJx27WbNmkX//p47TmdkZFBWVmZHuSI+pUAWn9qw+yhldS7GNR/EsiwAEhISKC8v7/Q1K1eu5JZbbulw2YoVK3A6nTidTqqqqrxSs4ivhNhdgPQdbrfhpXX7iA13M6y6az3et956i/z8fD799NMOl2dlZZGVlQWA0+nssVpF7KAesvjM2l0V7D5Sy12pUZSXHmqdX1ZWRnz8hZfdXL9+Pb/5zW9YvXo14eG6A7UEPgWy+ITLbXh53V7GxQ3gp7dfR1FREcXFxTQ2NpKdnU1mZma79tu2beOhhx5i9erVxMXF2VS1iG8pkMUn/rytnANVp3li9pWEh4WyfPly5s6dS0pKCgsXLiQ1NZWlS5eyevVqAJ588klOnTrFnXfeyZQpUy4IbJFAZBljutO+W41FwHPc8U0vbyS6XygfPXZ965d5Pc3pdJKfn++V9xa5TF3a6dVDFq97+6sSSo+d5Wezk70WxiKBQIEsXlV9qoGX1+3je+OGMDN5qN3liPg1BbJ41Yu5eznb6OJX309V71jkOyiQxWu2l57gnfxSHrh+DI64AXaXI+L3FMjiFW634Vc5u4iLCucnNzrsLkekV1Agi1es2nyIHWUn+cf544mKCLW7HJFeQYEsPe5QzRl+85fdXOeI5fYpF56BJyIdUyBLj3K5DT9/bwfBQRYvLpisL/JEukEXF5Ie9dp/F7Pp4DFeunMyIwb1s7sckV5FPWTpMfsq63jx473MmTCMv79KQxUi3aVAlh5RV9/Ew29tYWBECM///SQNVYhcAg1ZyGVzuw1PvLuDkpozvP3gdIYM0KUyRS6Feshy2ZZ/sp91hZX8860pZCTF2l2OSK+lQJbLsq6wkn9dv487psaz+NrRdpcj0qspkOWSfflNDY/9v61Mio/m+Ts0bixyuRTIckl2lp3kwTfzSRjcjzd+dDX9woLtLkmk11MgS7ftP1rH/a9vIrpfKG89OJ2YyDC7SxIJCApk6ZYdpSdY+H++JMiyePvB6QyP1skfIj1FgSxd9l/7qrj71S+JDA/mvYevYfSQSLtLEgkoOg5ZuuT9LWX84k9fM25YFG/+KJ24gRF2lyQScBTIclH1TS6e/aiQVZsOce3YWP793mkM1OU0RbxCgSydKqk5zaNvb6XgcC2PzBzLz2ZfSUiwRrlEvEWBLBdwuQ2vf1bMSx/vIzTYYuX9Tm5KGWZ3WSIBT4Es7RQcPsn//GAnO8pOctP4OH59+0RdRlPERxTIAkDpsTO8vG4fH24vJzYyjN/dPZXb0obr7DsRH1Ig93HF1adZ+d/f8M7mUoKDLB6+YSwPzxhLdH99cSfiawrkPsjtNnzxTQ2vf3aQDXsqCQ0K4k5nIj+9aRzDdDibiG0UyH3I/qOn+HBbOX/eVk75ibPERIbxkxvH8cOMkcRFKYhF7KZADmD1TS62HTrBJ3uPsr6wkm+qTxNkwffGDeWpecnMTb2CiFBdFEjEXyiQA8iJM43sKDvJpuIaNhUfY0fpSRpdbkKDLTKSYll83Wjmpl6hYQkRP6VA7mWMMRw/00RJzWlKas6wp6KOPRW17K2o48jJegCCgywmxkez+LrRpI+OISMphig/O7suNzeXn/70p7hcLh588EF+8YtftFve0NDAfffdx5YtW4iNjeWdd95h9OjR9hQr4iMKZD/hchtO1TdTW99E9akGquoaOFrX/rH8xFlKj53hVENz6+tCgy3GDh1ARlIs46+IInVENFNHDiIy3H8/WpfLxZIlS1i3bh0JCQmkp6eTmZnJhAkTWtusXLmSwYMHs3//frKzs3n66ad55513bKxaxPv8938tnt6gMS3Pz023LgPDt8vbzvv2uec1377e86SzNm7jCUaXMbhchma3G5fb0Ow27R49z9ssa2nb0OymoclNfbOL+iZXm+duz3Sz5/Fso4u6lvCtPdtEbX1zu5Bty7IgNjKMIQPCGR4dwfQxMYyM6e/5ie3P6NhIwkJ61+nMmzZtwuFwkJSUBMCiRYvIyclpF8g5OTk888wzACxYsIDHHnsMY4yOi5aA5pNAvu13f6Oo8lRrmHJemLYN27YBGwiCgywiQoKICA0mIjSY8NAg+oUGMzAilFGx/YmKCGVgRChRESEM7Od5jI0MIy4qgriB4cREhhEaYNePKC8vJzExsXU6ISGBr776qtM2ISEhREdHU1NTw5AhQ3xaq4gvWaYbCThv3jxTXV3d7ZVUn2qg9tRp+vfr32bN5xVykddb55Z20qjT11oXf1+A06dOM2DAANquwmp9rYXV5j2slgXn5rVOt7QPsjzLgiyLIAssy/rO9XemqqqKoUOHXuKrvetyazt+/Di1tbWMGjUKgJqaGk6fPs3IkSNb2xQUFDBu3DjCwjx3I9m5cycpKSmEhLTvQ1RVVXFun2xoaGDKlCmXXJe3+Otn6a91gf/Wdql1bdmyJc8YM+87G3qGBbr8c8mmTZt2OS/3GtXVfZdb2+eff27mzJnTOv3888+b559/vl2bOXPmmM8//9wYY0xTU5OJjY01brf7ou/bv3//y6rLW/z1s/TXuozx39ouo64uZWxg/S0svUJ6ejpFRUUUFxfT2NhIdnY2mZmZ7dpkZmby5ptvAvD+++9z4403avxYAp5ff6kngSkkJITly5czd+5cXC4XDzzwAKmpqSxduhSn00lmZiY//vGPuffee3E4HMTExJCdnW132SJe57NAzsrK8tWqukV1dV9P1DZ//nzmz5/fbt5zzz3X+jwiIoL33nuvW+/pr1/4+etn6a91gf/W5u26uvWlHhBgx0BIIHE6neTn59tdhkhHujTepjFkERE/0aOB/N5775GamkpQUNAFPZUXXngBh8NBcnIyeXl5Hb6+uLiY6dOn43A4uOuuu2hsbOzJ8gC46667mDJlClOmTGH06NGdHiY1evRoJk2axJQpU3A6nT1ex/meeeYZ4uPjW2tbs2ZNh+1yc3NJTk7G4XCwbNkyr9cF8OSTTzJ+/HjS0tK44447OHHiRIftfLXNvmsbNDQ0cNddd+FwOJg+fToHDx70Wi3nlJaWMmvWLCZMmEBqaiqvvPLKBW02btxIdHR062fcdojGm77rczHG8Pjjj+NwOEhLS2Pr1q1er2nv3r2t22HKlCkMHDiQ3/72t+3a+HJ7PfDAA8TFxTFx4sTWeceOHWP27NmMGzeO2bNnc/z48Q5f++abbzJu3DjGjRvX+kX0Jevq4RimC4e9FRYWmj179pgbbrjBbN68uXV+QUGBSUtLM/X19eabb74xSUlJprm5+YLX33nnnWbVqlXGGGMeeugh84c//OGSji/pqieeeMI8++yzHS4bNWqUqaqq8ur62/rVr35lXnzxxYu2aW5uNklJSebAgQOmoaHBpKWlmYKCAq/XlpeXZ5qamowxxjz11FPmqaee6rCdL7bZxbbBuUOSfv/735uHHnrIGGPMqlWrzMKFC71akzHGHD582GzZssUYY0xtba0ZN27cBZ/NJ598Ym699Vav13K+7/pc/vKXv5h58+YZt9ttvvjiC3P11Vf7sDrPZzps2DBz8ODBdvN9ub0+/fRTs2XLFpOamto678knnzQvvPCCMcaYF154ocP9vqamxowZM8bU1NSYY8eOmTFjxphjx451tArfH/aWkpJCcnLyBfNzcnJYtGgR4eHhjBkzBofDwaZNmy74xfDXv/6VBQsWAHD//ffz4Ycf9mR5F6zv3Xff5e677/baOnpa21OOw8LCWk859rY5c+a0npCRkZFBWVmZ19fZma5sg5ycHO6//37Ac9r1hg0bWk+P95bhw4dz1VVXARAVFUVKSgrl5eVeXWdPycnJ4b777sOyLDIyMjhx4gRHjhzx2fo3bNjA2LFjW08UssOMGTOIiYlpN6/tftRZHuXl5TF79mxiYmIYPHgws2fPJjc399IL6Wpyd+cH2Ag420wvB37YZnolsOC81wwB9reZTgR2eaO+lvefAeRfZHkxsBXYAmR5q44263sGOAh8DbwGDO6gzQLgP9pM3wss93Zt59XwUdvP0tfb7GLbAMhtedwFJLRpcwAY4sNtNBo4BAw8b/5MoAbYAawFUn1Uz0U/F+A/gevbTG9o+//XB/W9BjzWwXxsfZikAAADKklEQVSfbq+Wz21Xm+kTbZ5bbafbzP858M9tpn8J/PxSa+j2YW+WZa0Hruhg0T8ZY7zfXeuCLtZ4N7DqIm9zvTGm3LKsOGCdZVl7jDH/5a26gH8Dfo3nSJZfAy8BD1zO+nqqtnPbzLKsfwKagbc7eZse32bdYbpyaqqXWZY1APgT8A/GmNrzFm8FRhljTlmWNR/4EBjng7Js/VwuxrKsMCAT+McOFtu1vS5gjDGWZXn9KLNuB7Ix5uZLWE85nh7vOQkt89qqAQZZlhVijGnupE2P1GhZVgjw98C0i7xHecvjUcuy/gxcDVzWTtzVbWdZ1qt4ei3n68p2vCRd2GaLgduAm0xLV6CD9+jxbdaBrmyDc23KWj7raDz7l1dZlhWKJ4zfNsZ8cP7ytgFtjFljWdYfLMsaYozp/gViuqELn4vX9qsuuAXYaoypPH+BXdurjUrLsoYbY45YljUcONpBm3I8PflzEvCMEFwSXx32thpYZFlWuGVZY/D8lms3iNzyn/wTPH+SAtwPeKvHfTOwxxjT4WCoZVmRlmVFnXsOzMHzZ7DXtHzg59zRyfo2A+MsyxrT0rNYhGfbepVlWfOAp4BMY8yZTtr4apt1ZRusxrP/gGd/+mtnv0R6iuU5r3slsNsY83Inba5oaYdlWVfj+f/n1V8UXfxcVgP3WR4ZwEljjK8GkTv9S9WO7XWetvtRZ3mUB8yxLGuwZVmD8Wzfjg8j64oeHoO5AygDGoBKIK/Nsn/CM5a3F7ilzfw1wIiW50l4gno/8B4Q7qWxojeAh8+bNwJY06aOHS0/BXj+bPf2ONofgZ14xpBXA8PPr6tlej6wr2Vber2ulnXuB0qB7S0//27nNutoGwDP4fmFARDRsv/sb9mfknywja7HM9z0dZvtNB94+Ny+BjzWsm12AF8C1/qgrg4/l/PqsoDft2zPnfho/BiIxBOw0W3m2bK98PxSOAI0tWTYj4FYPOPpRcB6IKalrZP232M80LKv7Qd+dDl1dPdMPRER8RKdqSci4icUyCIifkKBLCLiJxTIIiJ+QoEsIuInFMgiIn5CgSwi4icUyCIifuL/A+juwDSeki0XAAAAAElFTkSuQmCC\n",
      "text/plain": [
       "<Figure size 432x288 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "def sigmoid(x):\n",
    "    \"\"\"\n",
    "    sigmoid函数\n",
    "    :param x: np.array 格式数据\n",
    "    :return: sigmoid 函数\n",
    "    \"\"\"\n",
    "    y = 1/(1+np.exp(-x))\n",
    "    \n",
    "    return y\n",
    "\n",
    "# 绘制 sigmoid 函数图像\n",
    "plot_activation_function(sigmoid)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "fragment"
    }
   },
   "source": [
    "优点:\n",
    "+ Sigmoid 函数的输出映射在(0,1)之间单调连续输出范围有限优化稳定可以用作输出层它在物理意义上最为接近生物神经元。\n",
    "+ 求导容易。\n",
    "\n",
    "缺点:\n",
    "+ 由于其软饱和性容易产生梯度消失导致训练出现问题。\n",
    "+ 其输出并不是以0为中心的"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "#### 2.tanh函数\n",
    "tanh是双曲函数中的一个,$Tanh()$为双曲正切在数学中双曲正切Tanh是由基本双曲函数双曲正弦和双曲余弦推导而来。\n",
    "\n",
    "公式如下:"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "fragment"
    }
   },
   "source": [
    "$$ f(x) = \\frac{1-e^{-2x}}{1+e^{-2x}}$$"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "slideshow": {
     "slide_type": "fragment"
    }
   },
   "outputs": [],
   "source": [
    "def tanh(x):\n",
    "    \"\"\"\n",
    "    tanh函数\n",
    "    :param x: np.array 格式数据\n",
    "    :return: tanh 函数\n",
    "    \"\"\"\n",
    "    y = \n",
    "    return y\n",
    "\n",
    "# 绘制 tanh 函数图像\n",
    "plot_activation_function(tanh)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {
    "slideshow": {
     "slide_type": "fragment"
    }
   },
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWQAAADuCAYAAAAOR30qAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3X9YU+fdP/B3IALiDwQUpIm/QiICEmkNFbc9TkGKtms6V1vx6yqbbbGte7rZPVaerbq675x07bpuZet3rLal1zZpa1vhai0qtbadtWKotJuiRQQKGJBAEFBJSHJ//7CmIkEDkp+8X9flBTnnPjmfnJy+e7jPfc6RCCFARESeF+DpAoiI6BIGMhGRl2AgExF5CQYyEZGXYCATEXkJBjIRkZdgIBMReQkGMhGRl2AgExF5Cekg2/OyPvJaS5YsQWlpqafLIHJE4kwjHiGT3zAYDJ4ugeiGMJCJiLwEA5mIyEswkImIvAQDmYjISzCQiYi8BAOZXGbNmjWIiorC7NmzHc4XQuDRRx+FUqmEWq3GZ599Zp9XWFgIlUoFlUqFwsJCd5VM5FGDHYdM5LQf/ehH+MlPfoLVq1c7nP/ee++huroa1dXVOHz4MB5++GEcPnwY7e3t2LJlC3Q6HSQSCebOnQutVovw8HA3fwL/541PDPLCkgAAEgkgkTg1nHjIGMjkMgsWLEBdXd2A84uLi7F69WpIJBKkpqaio6MDer0eBw4cQEZGBiIiIgAAGRkZKC0txcqVK91UuWuYLFac7TShubMHzed60NZtQrfJgi6TBd09FnSbLDhvsuC8yYpeqw29NoFeiw0Wmw0Wq0Dv5Z9WGyw2AZtNXLpSS1y6YksI8fVPQEB8/fPy/G9eCyFg89LQ82Yn/u8ShIwKdOk6GMjkMU1NTZgyZYr9tVwuR1NT04DTHSkoKEBBQQEAoLW11bUFO0kIgbq2CyivbUOVvgtftnThy5ZuGLpNDtsHSQMwLliKsSFSjAmSYkxwIIKkAQgNDEBQoATSgABIAyUYFRiAUYESSAMDIA2QIODrozWJBJBA8vXPb47kJADgYF6AfZ7EPs3bSJy7sM2tpAGur4mBTD4tJycHOTk5AACNRuOxOqw2gY+rW1Hy+Rl8cqoNzZ09AIDQoEDMjB6HtFmTIA8PxeTxIYgOC8Hk8SGYODYIY0OkCJa69qiLfAcDmTxGJpOhoaHB/rqxsREymQwymQwHDhzoM33hwoXuL9AJZzt7UHioDm9WNKG5swcTQkfh28qJ+FZsJFIVkZgROQYBbjiyIv/AQCaP0Wq1yM/PR1ZWFg4fPoywsDDExMQgMzMTv/jFL2A0GgEAe/fuxbZt2zxcbV/dJgv+9H41Cj+pQ6/Vhu/OnIRf3ZmAtPgoHvHSkDGQyWVWrlyJAwcOwGAwQC6XY8uWLejt7QUAPPTQQ7j99tuxe/duKJVKhIaG4uWXXwYAREREYNOmTUhJSQEAbN682X6Czxt8+GUrHt/5Oc52mfCDm+V4NF2JaZFjPF0W+QHJIIe98NwseS2NRgOdTuey97fZBJ7ZexJ/OVCDuOhxyLs7CTdP5VA8copT/VY8QiZygslixWOvf453v9Bj5a1T8Ks7E10+BIpGHgYy0XX0Wm1Y94+jKKtqwS9un4UH/0vh8gsEaGRiIBNdgxACG3d+gbKqFvz6rkSsnj/d0yWRH+O9LIiuYfu/avHW0SasXzyTYUwux0AmGkB5bTu2vXcCSxIn49F0pafLoRGAgUzkwAWzBf/zxueQh4/G0/eo2WdMbsE+ZCIHfr/3S3zVfgFFOakYFzLK0+XQCMEjZKKrnGzuwssHa7Fq3lSkKiI9XQ6NIAxkoqtse68KY4Ol2JAZ5+lSaIRhIBNd4eApAw6cbMV/p6kwITTI0+XQCMNAJrrCH8uqcVNYCFZ/a5qnS6ERiIFM9LWK+naU17XjwQUK3rGNPIKBTPS1Fw6cRnjoKKxImXL9xkQuwEAmAlBnOI+yqhbcN386QoM4GpQ8g4FMBGDHka8QGCDBqnlTPV0KjWAMZHKZ0tJSxMXFQalUIi8vr9/89evXIzk5GcnJyZg5cyYmTJhgnxcYGGifp9VqXVqn2WLDmxWNSJ8VhejxIS5dF9G18G8zcgmr1Yp169Zh3759kMvlSElJgVarRUJCgr3NH/7wB/vvzz//PI4ePWp/PXr0aFRWVrql1rKqFhi6zVjJo2PyMB4hk0uUl5dDqVRCoVAgKCgIWVlZKC4uHrD9jh07sHLlSjdW+I03KxoRExaCBapJHlk/0WUMZHKJpqYmTJnyzWgFuVyOpqYmh23r6+tRW1uLtLQ0+7Senh5oNBqkpqZi165dA66noKAAGo0GGo0Gra2tg66z44IZH1W34s45NyGQT4cmD2OXBXlcUVERli9fjsDAb8b+1tfXQyaT4fTp00hLS0NSUhJiY2P7LZuTk4OcnBwAl56pN1h7jjWj1yrwPXXM0D8A0TDhETK5hEwmQ0NDg/11Y2MjZDKZw7ZFRUX9uisut1UoFFi4cGGf/uXh9M4XekyLDEWSLMwl7080GAxkcomUlBRUV1ejtrYWZrMZRUVFDkdLnDhxAkajEfPnz7dPMxqNMJlMAACDwYCDBw/2ORk4XNq6TTh4yoDvqWN4v2PyCuyyIJeQSqXIz89HZmYmrFYr1qxZg8TERGzevBkajcYezkVFRcjKyuoTiFVVVVi7di0CAgJgs9mQm5vrkkA+cLIVNgEsSWR3BXkHiRBiMO0H1ZjInTQaDXQ6ndPt1/3jMxypa8en/5uOAJ7QI9dyagdjlwWNSL1WGz76shVps6IYxuQ1GMg0Ih2pa0eXyYK0WVGeLoXIjoFMI9L+qrMICgzAt5UTPV0KkR0DmUakf50yIGVGOMYE87w2eQ8GMo04hm4TTjR34VuxPDom78JAphHn09NtAIBvxfKJ0uRdGMg04hw81YZxwVJenUdeh4FMI86hGgPmKSIgDeTuT96FeySNKGc6LqKu7QL7j8krMZBpRDlS1w4AuHVGhIcrIeqPgUwjiq7OiDFBgZg1eZynSyHqh4FMI4qu3oibp4az/5i8EvdKGjG6enpxsrkTc6eFe7oUIocYyDRiHP2qAzYBaKYzkMk7MZBpxKioNyJAAtw8lYFM3omBTCPGZ18ZETd5PMby/hXkpRjI5DKlpaWIi4uDUqlEXl5ev/mvvPIKJk2ahOTkZCQnJ+PFF1+0zyssLIRKpYJKpUJhYeEN1yKEwBeN55A8hVfnkffioQK5hNVqxbp167Bv3z7I5XKkpKRAq9X2exTTihUrkJ+f32dae3s7tmzZAp1OB4lEgrlz50Kr1SI8fOhdDfVtF3DuYi/U8glDfg8iV+MRMrlEeXk5lEolFAoFgoKCkJWVheLiYqeW3bNnDzIyMhAREYHw8HBkZGSgtLT0hur5vLEDAKCW8wiZvBcDmVyiqakJU6ZMsb+Wy+Voamrq1+7NN9+EWq3G8uXL0dDQMKhlAaCgoAAajQYajQatra0D1vNF4zkESwMwM5oXhJD3YiCTx9x5552oq6vDF198gYyMDGRnZw/6PXJycqDT6aDT6TBp0qQB2/278RwSbxqPUbwghLwY905yCZlMZj/iBYDGxkbIZLI+bSIjIxEcHAwAeOCBB1BRUeH0soNhtQn858w59h+T12Mgk0ukpKSguroatbW1MJvNKCoqglar7dNGr9fbfy8pKUF8fDwAIDMzE3v37oXRaITRaMTevXuRmZk55FpOne3GBbOV/cfk9TjKglxCKpUiPz8fmZmZsFqtWLNmDRITE7F582ZoNBpotVr86U9/QklJCaRSKSIiIvDKK68AACIiIrBp0yakpKQAADZv3oyIiKHfne24/hwAYDZvSE9eTiKEGEz7QTUmcieNRgOdTtdv+rbdVXj5YB2O/zqTNxUiT5E404h7J/m94/pOqKLHMozJ63EPJb93orkL8THjPV0G0XUxkMmvGbpNaO0y8Yb05BMYyOTXTui7AIBHyOQTGMjk1040dwIAj5DJJzCQya8d13cialwwIscGe7oUoutiIJNfO6HnCT3yHQxk8lu9VhtOne3GrBh2V5BvYCCT3zrdeh5mqw0JPEImH8FAJr/1zQk9BjL5BgYy+a3j+k4EBQZAMWmMp0shcgoDmfzWCX0XlFFjeQ9k8hncU8lvnWju5Ak98ikMZPJL7efNaOk08YQe+RQGMvmlE/pLJ/TieIUe+RAGMvml6rPdAIA4PtSUfAgDmVymtLQUcXFxUCqVyMvL6zf/2WefRUJCAtRqNdLT01FfX2+fFxgYiOTkZCQnJ/d79JMzalq7MS5EiknjeMk0+Q4+wolcwmq1Yt26ddi3bx/kcjlSUlKg1WqRkJBgb3PzzTdDp9MhNDQUL7zwAh5//HG89tprAIDRo0ejsrJyyOs/dbYbsZPGQiJx6kENRF6BR8jkEuXl5VAqlVAoFAgKCkJWVhaKi4v7tFm0aBFCQ0MBAKmpqWhsbBy29de0dkMZNXbY3o/IHRjI5BJNTU2YMmWK/bVcLkdTU9OA7bdv346lS5faX/f09ECj0SA1NRW7du0acLmCggJoNBpoNBq0trYCADp7etHSaULsJAYy+RZ2WZDH/f3vf4dOp8OHH35on1ZfXw+ZTIbTp08jLS0NSUlJiI2N7bdsTk4OcnJyAFx6yClw6R4WAHiETD6HR8jkEjKZDA0NDfbXjY2NkMlk/dqVlZVh69atKCkpQXBwcJ/lAUChUGDhwoU4evSo0+s+9fUIi1heMk0+hoFMLpGSkoLq6mrU1tbCbDajqKio32iJo0ePYu3atSgpKUFUVJR9utFohMlkAgAYDAYcPHiwz8nA66lp7caoQAmmRoQOz4chchN2WZBLSKVS5OfnIzMzE1arFWvWrEFiYiI2b94MjUYDrVaLDRs2oLu7G/fccw8AYOrUqSgpKUFVVRXWrl2LgIAA2Gw25ObmDiqQT53txvTIMZDyHhbkYyRCiMG0H1RjInfSaDTQ6XRI+/0BxEWPwws/nOvpkoguc2r8JQ8hyK+YLTbUt13gCAvySQxk8iv1bedhtQmOsCCfxEAmv1LTenmEBQOZfA8DmfzK5SFvfEoI+SIGMvmVmtbzuCksBGOCOYCIfA8DmfzKqbPdiGX/MfkoBjL5lZrWbvYfk89iIJPf6LXacMFs5QgL8lkMZPIbJosNAEdYkO9iIJPf6Om1AuBd3sh3MZDJb5gsNowPkWLi2CBPl0I0JAxk8humXhuUUXxsE/kuBjL5DZPFyv5j8mkMZPIL5y72wsJ7WJCPYyCTX/jmKSEMZPJdDGRymdLSUsTFxUGpVCIvL6/ffJPJhBUrVkCpVGLevHmoq6uzz9u2bRuUSiXi4uKwZ8+e667r8k2FeIRMvoyBTC5htVqxbt06vPfeezh+/Dh27NiB48eP92mzfft2hIeH49SpU1i/fj02btwIADh+/DiKiopw7NgxlJaW4pFHHoHVar3m+mrOdkMCYAof20Q+jIFMLlFeXg6lUgmFQoGgoCBkZWWhuLi4T5vi4mJkZ2cDAJYvX473338fQggUFxcjKysLwcHBmDFjBpRKJcrLy6+5vprWbgRLAxEYwBEW5LsYyOQSTU1NmDJliv21XC5HU1PTgG2kUinCwsLQ1tbm1LJXO3W2G8GjuDuTbxvUM/WWLFkiDAbDkFbU2tqKSZMmDWlZV2Jdg+dMbUajEZ2dnZg2bRoAoK2tDefPn8fUqVPtbY4dOwaVSoWgoEsXcvz73/9GfHw8zpw5g7FjxyIiIgIAUFdXh7CwMISHhzusxWAwwDLuJlja6nHzHPVwfcxh463fpbfWBXhvbUOtq6KiYo8QYsl1GwohBvNvyObOnXsji7sM6xo8Z2r75JNPxG233WZ//dvf/lb89re/7dPmtttuE5988okQQoje3l4RGRkpbDZbv7ZXtnPkhL5TTNv4jggZHznYj+IW3vpdemtdQnhvbTdQl1MZy7/xyCVSUlJQXV2N2tpamM1mFBUVQavV9mmj1WpRWFgIANi5cyfS0tIgkUig1WpRVFQEk8mE2tpaVFdX49Zbbx1wXZdHWEhsFtd9ICI34GMVyCWkUiny8/ORmZkJq9WKNWvWIDExEZs3b4ZGo4FWq8X999+P++67D0qlEhERESgqKgIAJCYm4t5770VCQgKkUin+/Oc/IzAwcMB1XR6DzEAmn+fsobS4wS6Lv/71rzeyuMuwrsHzttoe3fGZ+Na298XUqVM9XYpD3ra9LvPWuoTw3tpuoC6nMnZQJ/UADKoxkTvc8aePMXFsMI795RHodDpPl0PkiFPjMdmHTD7NZhM43Xqel0yTXxjWQH7jjTeQmJiIgICAfkcqzlwKW1tbi3nz5kGpVGLFihUwm83DWR4AYMWKFUhOTkZycjKmT5+O5ORkh+2mT5+OpKQkJCcnQ6PRDHsdV3vyySchk8nste3evdthu+tdjuwKGzZswKxZs6BWq7Fs2TJ0dHQ4bOeubXblNtiU9ywu9vZ9bNO1Lsl2lYaGBixatAgJCQlITEzEH//4x35tDhw4gLCwMPt3/Otf/9rldQHX/16EEHj00UehVCqhVqvx2WefubymkydP2rdDcnIyxo8fj+eee65PG3durzVr1iAqKgqzZ8+2T2tvb0dGRgZUKhUyMjJgNBodLltYWAiVSgWVSmU/ST1kzvZtCCf6kI8fPy5OnDghvvvd74ojR47Ypx87dkyo1WrR09MjTp8+LRQKhbBYLP2Wv+eee8SOHTuEEEKsXbtW/OUvfxlSZ42zHnvsMbFlyxaH86ZNmyZaW1tduv4r/epXvxJPP/30NdtYLBahUChETU2NMJlMQq1Wi2PHjrm8tj179oje3l4hhBCPP/64ePzxxx22c8c2u3obxKfdLaZtfEd8WmOwD0n685//LNauXSuEEGLHjh3i3nvvdWlNQghx5swZUVFRIYQQorOzU6hUqn7fzQcffCDuuOMOl9dytet9L++++65YsmSJsNls4tChQ+LWW291Y3WXvtPo6GhRV1fXZ7o7t9eHH34oKioqRGJion3ahg0bxLZt24QQQmzbts3hft/W1iZmzJgh2traRHt7u5gxY4Zob293tAr3D3uLj49HXFxcv+nOXAorhMD+/fuxfPlyAEB2djZ27do1nOX1W9/rr7+OlStXumwdw82Zy5Fd4bbbboNUemlATmpqKhobG12+zoFcvQ3m/FcmgL43FRrokmxXiomJwS233AIAGDduHOLj4697daG3KC4uxurVqyGRSJCamoqOjg7o9Xq3rf/9999HbGys/SIiT1iwYIH9QqTLrtyPBsqjPXv2ICMjAxEREQgPD0dGRgZKS0uHXIdb+pCduRS2ra0NEyZMsP+H78zlsjfi448/RnR0NFQqlcP5EokEt912G+bOnYuCggKX1XGl/Px8qNVqrFmzxuGfR0O5pHi4vfTSS1i6dKnDee7YZldvg97RERglzIgYE+SwzZWXZLtLXV0djh49innz5vWbd+jQIcyZMwdLly7FsWPH3FLP9b4XT+9XRUVFAx4YeWJ7XdbS0oKYmBgAwOTJk9HS0tKvzXBvu0GPQ168eDGam5v7Td+6dSvuuuuuIRcynJypcceOHdc8Ov7Xv/4FmUyGs2fPIiMjA7NmzcKCBQtcVtfDDz+MTZs2QSKRYNOmTfj5z3+Ol1566YbWN1y1Xd5mW7duhVQqxapVqxy+hyu22fUYTIEYa+vymsc2dXd34+6778Zzzz2H8ePH95l3yy23oL6+HmPHjsXu3bvx/e9/H9XV1S6vyRPfi7PMZjNKSkqwbdu2fvM8tb0ckUgkbtnHBh3IZWVlg16JTCZDQ0OD/XVjYyNkMlmfNpGRkejo6IDFYoFUKnXYZrhqtFgseOutt1BRUXHNmgEgKioKy5YtQ3l5+Q3vxM5uuwcffBDf+973HNZ0ve3oqtpeeeUVvPPOO3j//fcH3DFdsc0crePKbdB8UYLpIY7byOVyWCwWnDt3DpGRkcNahyO9vb24++67sWrVKvzgBz/oN//KgL799tvxyCOPwGAwYOLEiS6t63rfiyv3q+t57733cMsttyA6OrrfPE9tr8uio6Oh1+sRExMDvV6PqKiofm1kMhkOHDhgf93Y2IiFCxcOeZ1u6bJw5lJYiUSCRYsWYefOnQAunbl01RF3WVkZZs2aBblc7nD++fPn0dXVZf997969fc6+usKVfXZvv/22w/U5czmyK5SWluJ3v/sdSkpKEBrq+H7D7tpmV26Dlo5u9Agpvq2O7dNmoEuyXUkIgfvvvx/x8fF47LHHHLZpbm6292WXl5fDZrO5/H8UznwvWq0Wr776KoQQ+PTTTxEWFmb/U93VrvWXqie215Wu3I8GyqPMzEzs3bsXRqMRRqMRe/fuRWZm5tBX6uzZP+HEKIu33npLyGQyERQUJKKiovrcXOY3v/mNUCgUYubMmWL37t326UuXLhVNTU1CCCFqampESkqKiI2NFcuXLxc9PT3XW+WQZGdnixdeeKHPtKamJrF06VJ7HWq1WqjVapGQkCB+85vfuKSOK/3whz8Us2fPFklJSeLOO+8UZ86c6VeXEJfOiKtUKqFQKNxSlxBCxMbGCrlcLubMmSPmzJljH8HgqW12eRvMSEkX0za+I96vahabNm0SsbGxQgghLl68KJYvXy5iY2NFSkqKqKmpcVktl3388ccCgEhKSrJvp3fffVe88MIL9n3t+eefFwkJCUKtVot58+aJgwcPuryugb6XK+uy2WzikUceEQqFQsyePbvPCClX6u7uFhEREaKjo8M+zVPbKysrS0yePFlIpVIhk8nEiy++KAwGg0hLSxNKpVKkp6eLtrY2IYQQR44cEffff7992e3bt4vY2FgRGxsrXnrppYFWwSv1yL+9duQrbHzz3/howyJMjQyFRqPhlXrkrXilHvm3U2e7ESQNgCx8tKdLIRoWDGTyWTWt56GYOIaPbSK/wUAmn3XqbDdi+ZRp8iMMZPJJF81WNBgvQMmbCpEfYSCTT6pp7YYQQNzkcZ4uhWjYMJBp2Dlzl6zKykrMnz8fiYmJUKvVeO211+zzfvSjH2HGjBn2u3xVVlb2W/5k86WxtTOjGcjkPxjINOzy8vKQnp6O6upqpKenO7xNaGhoKF599VUcO3YMpaWl+NnPftbntp5PP/00KisrUVlZ6fAWqV+e7UJQYACmRzq+UIXIFzGQadg5c5esmTNn2m/sdNNNNyEqKgqtra1Or+PL5i4oJo2BNJC7MPkP7s007Jy5S9aVysvLYTabERv7zSXQv/zlL6FWq7F+/XqYTKZ+y3zZ0o2Z0eNQUFAAjUYDjUYzqEAn8kYMZBqSxYsXY/bs2f3+XX1/5uvdJUuv1+O+++7Dyy+/jICAS7vjtm3bcOLECRw5cgTt7e146qmn+izTbbKgqeMiZkaPRU5ODnQ6HXQ6HSZNmjT8H5TIjQZ9tzci4Np3h3PmLlkA0NnZiTvuuANbt25Famqqffrlo+vg4GD8+Mc/xjPPPNNnueoWntAj/8QjZBp2ztwly2w2Y9myZVi9erX9KTGXXb7znRACu3bt6nd3suqWbgAMZPI/DGQadrm5udi3bx9UKhXKysqQm5sLANDpdHjggQcAAK+//jo++ugjvPLKK/2Gt61atQpJSUlISkqCwWDAE0880ef9T7Z0IWRUAKZEcIQF+Rfe7Y18zn3bD8N4wYx3/vu/+kzn3d7Ii/Fub+SfvmzpwswodleQ/2Egk085d7EXLZ0mzOQl0+SHGMjkU74ZYcGbCpH/YSCTTznJIW/kxxjI5FOqW7oxJigQsgl8Sgj5HwYy+ZSTzV1QRY9z+VOkiTyBgUw+pfpsF/uPyW8xkMlntHaZYOg2s/+Y/BYDmXzGcX0nACDxpjAPV0LkGgxk8hnHz1wK5ISY8R6uhMg1GMjkM47rOyGbMBphoaM8XQqRSzCQyWccO3MOCTfx6Jj8FwOZfMIFswW1hvNIZCCTH2Mgk0840dwFIdh/TP6NgUw+wX5Cj0fI5McYyOQTjp05h7DRo3jJNPk1BjINu/b2dmRkZEClUiEjIwNGo9Fhu8DAQPvTQrRarX16bW0t5s2bB6VSiRUrVsBsNuPzhnNQy8N4yTT5NQYyDbu8vDykp6ejuroa6enpyMvLc9hu9OjRqKysRGVlJUpKSuzTN27ciPXr1+PUqVMIDw/H//vbSzjZ0gW1nBeEkH9jINOwKy4uRnZ2NgAgOzsbu3btcnpZIQT2799vf/BpdnY2dpYdgtUmoJZPcEm9RN6CgUzDrqWlBTExMQCAyZMno6WlxWG7np4eaDQapKam2kO7ra0NEyZMgFQqBQDI5XI09wYDAOY4COSCggJoNBpoNBq0tra64uMQuY3U0wWQb1q8eDGam5v7Td+6dWuf1xKJZMB+3/r6eshkMpw+fRppaWlISkpCWFj/bgnbBDmixgVjclhIv3k5OTnIyckBcOkhp0S+jIFMQ1JWVjbgvOjoaOj1esTExECv1yMqKsphO5lMBgBQKBRYuHAhjh49irvvvhsdHR2wWCyQSqVobGxEwMQZ7D+mEYFdFjTstFotCgsLAQCFhYW46667+rUxGo0wmUwAAIPBgIMHDyIhIQESiQSLFi3Czp07AQAvFv4D5pBw9h/TiMBApmGXm5uLffv2QaVSoaysDLm5uQAAnU6HBx54AABQVVUFjUaDOXPmYNGiRcjNzUVCQgIA4KmnnsKzzz4LpVKJhguBACS4ZWq4pz4OkdtIhBCDaT+oxkQ36tm9J5H/wSl88WQmxgZfu4dNo9FAp9O5qTKiQXFqAD2PkMmr6eqNiI8Zf90wJvIHDGTyWharDZUNHdBMY3cFjQwMZPJaVfouXDBbMXd6hKdLIXILBjJ5rYr6dgDgETKNGAxk8lrlde24KSwEN/EObzRCMJDJK9lsAodq2jA/dqKnSyFyGwYyeaWq5k4YL/Ti28pIT5dC5DYMZPJKh2raAADzYxnINHIwkMkrfVLTBsXEMYgJY/8xjRwMZPI6vVYbDp9uw7fYXUEjDAOZvM5n9UacN1vxbZ7QoxGGgUxeZ//JsxgVKMF3VAxkGlkYyOR19ledxbwZkRgXMsqrF8o7AAAHUElEQVTTpRC5FQOZvMpXbRdQfbYbabMc39SeyJ8xkMmr7D9x6fl76fEMZBp5GMjkVfYeb0HspDGYFjnG06UQuR0DmYZde3s7MjIyoFKpkJGRAaPR2K/NBx98gOTkZPu/kJAQvPr6Lnx6ug2W2iOYMWOGfV5lZaUHPgWR+zGQadjl5eUhPT0d1dXVSE9PR15eXr82ixYtQmVlJSorK7F//36EhobCFJUAmwCiLn6Fp59+2j4/OTnZA5+CyP0YyDTsiouLkZ2dDQDIzs7Grl27rtl+586dWLp0KfaeMCAuehzGWLvcUSaR12Eg07BraWlBTEwMAGDy5MloaWm5ZvuioiJkLluJI3VG3Dnn0nK//OUvoVarsX79evvTqR0pKCiARqOBRqNBa2vr8H0IIg/gQ05pSBYvXozm5uZ+07du3Yrs7Gx0dHTYp4WHhzvsRwYAvV4PtVqN//37x3j+QA0+2rAIUtM5TJ48GWazGTk5OYiNjcXmzZuvWxMfckpezKmHnPLJkTQkZWVlA86Ljo6GXq9HTEwM9Ho9oqIGHsL2+uuv4/vLluGNz5rwHeVETIkIBRAKAAgODsaPf/xjPPPMM8NdPpFXYpcFDTutVovCwkIAQGFhIe66664B2+7YsQOJi++F/lwP/s+tUwFcOmoGACEEdu3ahdmzZ7u+aCIvwECmYZebm4t9+/ZBpVKhrKwMubm5AACdTocHHnjA3q6urg4NDQ34/Px4TBwbhMUJ0QCAVatWISkpCUlJSTAYDHjiiSc88jmI3I19yORRJ5u7kPncR1i/eCZ+ulh1Q+/FPmTyYk71IfMImTzqrx/VYPSoQKyeP83TpRB5HAOZPKbReAEllWew8tapCB8T5OlyiDyOgUwe8/u9XyIwQIIHF8zwdClEXoGBTB7xn6ZzePtoE9Z8Zwafm0f0NQYyuZ3NJvDrd44jYkwQHl4Y6+lyiLwGA5nc7p/lX6G8th0bl8RhPJ8KQmTHQCa3ami/gG27q/Ad5UTcq5ni6XKIvAoDmdymp9eKR/7xGQIkEmz7QRIkEqeGZhKNGLyXBbmFEAJP7PoP/t10Dn9brfn6nhVEdCUeIZPLCSGQ994J7KxoxE/TVcj4+hJpIuqLR8jkUjabwFOlJ/DXj07jvtRp+NkNXh5N5M8YyOQy3SYLct/8Au98ocd9qdOwRZvIfmOia2Agk0tU1BvxP298jvq289i4ZBYe+q6CYUx0HQxkGlaNxgv4Y1k13qhoRExYCP75YCpSFZGeLovIJzCQ6YZZbQIHTxnwRkUjSv+jhwQS5CxQ4KfpKowJ5i5G5CyOsqAh6bhgRul/9PhV8X/wnaf2Y/VL5fjoy1asmjcNGxLO4x8blmPc6KBr3p+4tLQUcXFxUCqVyMvLs0+vra3FvHnzoFQqsWLFCpjNZnd8JCKP4+ELDain1wpDtwlnOnpwpuMiag3n8WVLF062dKHWcB5CAKNHBWJ+bCSeuCMBixOiECwNRFVVABa89RbWrl074HtbrVasW7cO+/btg1wuR0pKCrRaLRISErBx40asX78eWVlZeOihh7B9+3Y8/PDDbvzkRJ7hlkA+cPIsuk0WAMDVDyi5+hEk13qCSf9lxcDzrrGeq9fRb43iyl+vanvN9x24vuste/XM/tvlyt8H0RaAxWpDr9UGs1XAbLn0e6/VBrPFBrPVhl6rwHmTBecu9uLcxV50fv3TZLH1ed8ACTA9cgxmRo/DsmQZ5sdGQi2fgCBp3z+04uPjcT3l5eVQKpVQKBQAgKysLBQXFyM+Ph779+/HP//5TwBAdnY2nnzySQYyjQhuCeSt71ah+my3O1ZF1xEUGIAgaQBGBUq+/hmAoMAAhAYHImz0KESPH4vxIaMQNnoUxo8ehcgxQZCFj0ZM2GjIw0cjZFTgsNTR1NSEKVO+uZeFXC7H4cOH0dbWhgkTJkAqldqnNzU1Dfg+BQUFKCgoAAC0trYOS21EnuKWQP7bag16rd8cbfUf/dR3wpXzr2569dApSZ95V7/rwO/br4Krl71iQv8aBl5P/3lXLzz0ZYdakzRQglGBl0J4uIaeLV68GM3Nzf2mb9269ZpPmR5uOTk5yMnJAXDpmXpEvswtgTx94hh3rIbcqKys7IaWl8lkaGhosL9ubGyETCZDZGQkOjo6YLFYIJVK7dOJRgKOsiCPSElJQXV1NWpra2E2m1FUVAStVguJRIJFixZh586dAIDCwkK3HnETeRIDmYbd22+/DblcjkOHDuGOO+5AZmYmAODMmTO4/fbbAQBSqRT5+fnIzMxEfHw87r33XiQmJgIAnnrqKTz77LNQKpVoa2vD/fff77HPQuROkmuNanBgUI2J3Emj0Vxz3DORBzl18oZHyEREXoKBTETkJRjIRERegoFMROQlBntSj8hrSSSSUiHEEk/XQTRUDGQiIi/BLgsiIi/BQCYi8hIMZCIiL8FAJiLyEgxkIiIvwUAmIvISDGQiIi/BQCYi8hIMZCIiL/H/AQGRDwgIKcptAAAAAElFTkSuQmCC\n",
      "text/plain": [
       "<Figure size 432x288 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "def tanh(x):\n",
    "    \"\"\"\n",
    "    tanh函数\n",
    "    :param x: np.array 格式数据\n",
    "    :return: tanh 函数\n",
    "    \"\"\"\n",
    "    y = (1-np.exp(-2*x))/(1+np.exp(-2*x))\n",
    "    return y\n",
    "\n",
    "# 绘制 tanh 函数图像\n",
    "plot_activation_function(tanh)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "fragment"
    }
   },
   "source": [
    "优点:\n",
    "+ 比Sigmoid函数收敛速度更快。\n",
    "+ 相比Sigmoid函数其输出以0为中心。\n",
    "\n",
    "缺点:\n",
    "+ 还是没有改变Sigmoid函数的最大问题——由于饱和性产生的梯度消失"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "#### 3.ReLU函数\n",
    "\n",
    "Relu激活函数The Rectified Linear Unit),用于隐层神经元输出公式如下"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "fragment"
    }
   },
   "source": [
    "$$ f(x) = max(0, x)$$"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "slideshow": {
     "slide_type": "fragment"
    }
   },
   "outputs": [],
   "source": [
    "def relu(x):\n",
    "    \"\"\"\n",
    "    relu 函数\n",
    "    :param x: np.array 格式数据\n",
    "    :return: relu 函数\n",
    "    \"\"\"\n",
    "   \n",
    "    y = \n",
    "\n",
    "    return y\n",
    "\n",
    "# 绘制 relu 函数\n",
    "plot_activation_function(relu)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {
    "slideshow": {
     "slide_type": "fragment"
    }
   },
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWQAAADyCAYAAAB6U7/KAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAH+lJREFUeJzt3XtYlGXCP/DvoxwUERQBRfGAgnISOYyivq7lGmpq9vMs2ptlvpimZa6W5VttvptadtIsW7a23ARPq0nrcfNQXpabDgcNCRUDFSTlpMh5DvfvD9CLBHRAZu6Hme/nurxyhnuYb88M37m555lbRQgBIiKSr5XsAEREVI2FTESkEixkIiKVYCETEakEC5mISCVYyEREKsFCJiJSCRYyEZFKsJCJiFTCrpHj+bE+Uq0xY8bgwIEDsmMQ1UcxZRBnyGQ18vPzZUcgeiAsZCIilWAhExGpBAuZiEglWMgk1Zw5c+Dp6Yng4OA71xUWFiIqKgp+fn6IiopCUVGRxIRElsNCJqmeeuqpOmdGrFmzBiNHjsSFCxcwcuRIrFmzRlI6IstiIZNUw4cPh5ub2++uS0hIwOzZswEAs2fPxu7du2VEI7K4xp6HTGR2165dg5eXFwCgS5cuuHbtWoNjY2NjERsbCwDIy8uzSD4ic+EMmVRNURQoSsPn1MfExECr1UKr1cLDw8OCychWJF8uwpJtKSit1Jv9vjhDJtXp3LkzcnNz4eXlhdzcXHh6esqORDaqqLQKz8UloVUrBTqD0ez3xxkyqc6ECROwadMmAMCmTZvw+OOPS05EtshoFFi8LQX5JVX4ZFY4Ojg5mP0+WcgkVXR0NIYMGYJz587B29sbn3/+OZYvX45vv/0Wfn5+OHToEJYvXy47Jtmgj49m4PvzeXj9sUCEeHewyH0qQjRqvyBuLkSqpdFooNVqZccgK3D8Qj7+++8/4fEBXfHB9NB7vo9hIm4uRETUWL/drMALW5Ph6+GMtyb2b44yNhkLmYiohs5gxML4JJTrDNj4RDjaOVr2vAeeZUFEVOPt/enQXirC+ugw+Hq2t/j9c4ZMRATgQGouPjueiSeH9MSEAV2lZGAhE5HNy8wvxbIdZzCgewesGBcgLQcLmYhsWoXOgPmbE9G6tYKPZ4bB0a61tCxcQyYim/Z6QirSf7uFL54eCO+OTlKzcIZMRDZr+6kr2K7NxqI/+mJEP/kf0WchE5FNSrtajNcSUjG0TycsfqSv7DgAWMhEZIOKK3RYEJeIDk72WB8dhtatLPfhj3vhGjIR2RQhBF7acQZXisqxNWYw3J0dZUe6gzNkIrIpnx/PxIGzv2H5GH8M7OV2/xtYEAuZiGyGNqsQa/anY1RgZ8z9g4/sOHWwkInIJuSXVOK5+CR069gWa6cOsOimQabiGjIRWT2DUeCFrcm4UabDrgUD4drWXnakerGQicjqrTt0Hj9kFOCdySEI6uoqO06DuGRBRFbt6LnrWH8kA1MjvDFtYHfZce6JhUxEVivnRjle3JYC/y7tsfLxYNlx7ouFTERWqUpvxIK4JOgNAhufiEBbB3mbBpmKa8hEZJVW7fsFp6/cwMZZ4fBxbyc7jkk4QyYiq/Ov01fx5Y9ZeGaYDx7t7yU7jslYyERkVTKul2D5zjOI6NkRyx/1lx2nUVjIRGQ1yqr0WBCXCEf71tgwMwz2rVtWxXENmYisghACK75OxYXrJfjHnEHwcm0rO1KjtayXDyKiBsSfvIyvk3OweGRf/MHPQ3acJmEhE1GL93P2Tbz5TRqG9/XAoj/6yo7TZCxkImrRbpbpMD8uEe7ODvhweihaqWSz+abgGjIRtVhGo8CS7Sm4VlyBbfOGwK2dg+xID4QzZCJqsf567FccTr+OFWMDEN6jo+w4D4yFTEQt0omLBVh7MB3jQrwwe2gv2XGaBQuZiFqc68UVWLQlGb3c2+HtySGq3Gy+KVjIpFoffPABgoKCEBwcjOjoaFRUVMiORCqgNxixaEsySip12DgrAs6O1vNWGAuZVCknJwfr16+HVqtFamoqDAYDtm7dKjsWqcB7357HT5mFWDWxP/p1aS87TrNiIZNq6fV6lJeXQ6/Xo6ysDF27dpUdiSQ7lHYNG7+7iOhBPTAp3Ft2nGbHQiZV6tatG5YuXYoePXrAy8sLrq6uGDVqVJ1xsbGx0Gg00Gg0yMvLk5CULOVyQRmWbE9BUFcXvPFYoOw4ZsFCJlUqKipCQkICMjMzcfXqVZSWlmLz5s11xsXExECr1UKr1cLDo2V+XJbur0JnwIL4RAgAG2dFoI29+jebbwoWMqnSoUOH4OPjAw8PD9jb22PSpEn48ccfZcciSVbuSUNqTjHenxaKHp2cZMcxGxYyqVKPHj3wn//8B2VlZRBC4PDhwwgICJAdiyTYlZSN+J8u49mH+iAqsLPsOGbFQiZVioyMxJQpUxAeHo7+/fvDaDQiJiZGdiyysHO/3cKKr1MxyMcNS0f1lR3H7BQhRGPGN2owkSVpNBpotVrZMaiZlFTqMWHDcRSX67Hv+WHwdGkjO9KDMOmTK5whE5HqCCHw8s4zyMovxUfRYS29jE3GQiYi1fnHiUvYeyYXS0f3w5A+nWTHsRgWMhGpSvLlIvxlbxpG+nvi2eF9ZMexKBYyEalGUWkVnotLQmeXNnhv2oAWvdl8U1jPrhxE1KIZjQKLt6Ugv6QK/5w/BB2cWvZm803BGTIRqcLHRzPw/fk8vP5YIEK8O8iOIwULmYikO34hH+8fOo//F9oVsyJ7yI4jDQuZiKTKvVmO57cmw9fDGasm9beazeabgoVMRNLoDEYsjE9Ghc6AjU9EwMnBtt/Wsu3/eyKS6u396Ui8VIT10WHw9XSWHUc6zpCJSIoDqbn47HgmZg/piQkD+I8PACxkIpIgM78Uy3acwYDuHfDqOO7idxsLmYgsqkJnwPzNiWjdWsHHM8PgaGedm803BdeQiciiXk9IRfpvt/DF0wPh3dF6N5tvCs6Qichitp+6gu3abCz6oy9G9POUHUd1WMhEZBFpV4vxWkIqhvbphMWPWP9m803BQiYisyuu0GFBXCI6ONljfXQYWtvYpkGm4hoyEZmVEAIv7TiDK0Xl2BozGO7OjrIjqRZnyERkVp8fz8SBs79h+Rh/DOzlJjuOqrGQichsTmUVYvX+dIwO6oy5f/CRHUf1WMhEZBb5JZVYGJ8E745tsXbqAJveNMhUXEMmomZnMAq8sDUZN8p02LVgIFza2MuO1CKwkImo2a07dB4/ZBTgnckhCOrqKjtOi8ElCyJqVkfPXcf6IxmYGuGNaQO7y47TorCQiajZ5Nwox4vbUuDfpT1WPh4sO06Lw0ImomZRpTdiQVwS9AaBjU9EoK0DNw1qLK4hE1GzWLXvF5y+cgMbZ4XDx72d7DgtEmfIRPTA/nX6Kr78MQvPDPPBo/29ZMdpsVjIRPRAMq6XYPnOM4jo2RHLH/WXHadFYyETUZOVVekxf3MiHO1bY8PMMNi3ZqU8CB49Uq0bN25gypQp8Pf3R0BAAE6cOCE7EtUihMCru35GRl4J1s8Ig5drW9mRWjy+qUeq9cILL2DMmDH45z//iaqqKpSVlcmORLXEn7yM3SlXsSSqL4b5ucuOYxVYyKRKN2/exLFjx/Dll18CABwcHODg4CA3FN3xc/ZNvPlNGob39cDCEb6y41gNLlmQKmVmZsLDwwNPP/00wsLCMHfuXJSWlsqORQBulukwPy4R7s4O+HB6KFpxs/lmw0ImVdLr9UhKSsL8+fORnJyMdu3aYc2aNXXGxcbGQqPRQKPRIC8vT0JS22I0CizZnoJrxRXYMCscbu34W0tzYiGTKnl7e8Pb2xuRkZEAgClTpiApKanOuJiYGGi1Wmi1Wnh4eFg6ps3567FfcTj9OlaMDUB4j46y41gdFjKpUpcuXdC9e3ecO3cOAHD48GEEBgZKTmXbTlwswNqD6RgX4oXZQ3vJjmOV+KYeqdZHH32EWbNmoaqqCr1798YXX3whO5LNul5cgUVbktHLvR3enhzCzebNhIVMqhUaGgqtVis7hs3TG4xYtCUZJZU6xM2NhLMja8NceGSJ6J7e/fd5/JRZiPenDUC/Lu1lx7FqXEMmogZ9m3YNn35/EdGDemBSuLfsOFaPhUxE9bpcUIY/bU9BcDcXvPEY31C1BBYyEdVRoTNgQXwiAGDjrAi0sedm85bANWQiqmPlnjSk5hTjb09q0N3NSXYcm8EZMhH9zq6kbMT/dBnPPtQHUYGdZcexKSxkIrrj3G+3sOLrVAzyccPSUX1lx7E5LGQiAgCUVOoxPy4R7RztsCE6DHbcbN7ieMSJCEIIvLzzDLLyS/FRdBg8XdrIjmSTWMhEhH+cuIS9Z3KxdHQ/DOnTSXYcm8VCJrJxyZeL8Je9aRjp74lnh/eRHcemsZCJbFhRaRWei0tCZ5c2eH8aN5uXjechE9koo1Fg8bYU5JdUYef8oXB1spcdyeZxhkxkozYczcD35/PwxoRA9Pd2lR2HwEImsknHL+Tjg0PnMTGsG2YO6iE7DtVgIRPZmNyb5Xh+azL8PJ3x1sRgbjavIixkIhuiMxixMD4ZFToDPpkVAScHvo2kJnw0iGzI2/vTkXipCOujw+Dr6Sw7Dt2FM2QiG3EgNRefHc/E7CE9MWFAV9lxqB4sZCIbkJlfimU7zmBA9w54dVyA7DjUABYykZWr0Bkwf3MiWrdW8PHMMDjacbN5teIaMpGVez0hFem/3cIXTw+Ed0duNq9mnCETWbHtp65guzYbi/7oixH9PGXHoftgIRNZqbNXb+K1hFT8l28nLH6Em823BCxkIitUXKHDgrgkdHCyx7oZYWjNTYNaBK4hE1kZIQSW7TiN7KJybIsZDHdnR9mRyEScIRNZmc+PZ+Lg2Wt45VF/aHq5yY5DjcBCJrIip7IKsXp/OkYHdcYzw3xkx6FGYiETWYn8kkosjE+Cd8e2WDt1ADcNaoG4hkxkBQxGgRe2JuNGmQ67FgyESxtuNt8SsZCJrMC6Q+fxQ0YB3pkcgqCu3Gy+peKSBamawWBAWFgYxo8fLzuKah09dx3rj2RgaoQ3pg3sLjsOPQAWMqnaunXrEBDAzXAaknOjHC9uS4F/l/ZY+Xiw7Dj0gFjIpFrZ2dnYu3cv5s6dKzuKKlXpjVgQlwSDQWDjExFo68BNg1o6FjKp1uLFi/HOO++gVSs+Tevz1t40nL5yA2unhsDHvZ3sONQM+EwnVdqzZw88PT0RERFxz3GxsbHQaDTQaDTIy8uzUDr5vjl9FZtOXMLcYT4YE+wlOw41E0UI0ZjxjRpM1FSvvPIKvvrqK9jZ2aGiogLFxcWYNGkSNm/e3OBtNBoNtFqtBVPKkXH9FiZs+AEBXi7YGjMY9q05r2oBTDopnIVMqvfdd9/h3XffxZ49e+45zhYKuaxKj8c3/IDC0irsff4P6OLaRnYkMo1JhczzkIlaCCEEXt31MzLySvDVnEiWsRViIZPqPfzww3j44Ydlx5Au/uRl7E65iiVRfTHMz112HDIDLj4RtQA/Z9/Em9+kYXhfDywc4Ss7DpkJC5lI5W6W6TA/LhHuzg74cHooWnGzeavFJQsiFTMaBZZsT8G14gpsmzcEbu0cZEciM+IMmUjF/nrsVxxOv44VYwMQ3qOj7DhkZixkIpU6cbEAaw+mY1yIF2YP7SU7DlkAC5lIha4XV2DRlmT0cm+HtyeHcLN5G8E1ZCKV0RuMWLglGaWVesT/TyScHfljaiv4SBOpzLv/Po+TmYV4f9oA9O3cXnYcsiAuWRCpyLdp1/Dp9xcxM7IHJoV7y45DFsZCJlKJywVl+NP2FAR3c8Hr4wNlxyEJWMhEKlChM2BBfCIAYOOsCLSx52bztohryEQqsHJPGlJzivG3JzXo7uYkOw5JwhkykWS7krIR/9NlPPtQH0QFdpYdhyRiIRNJdO63W1jxdSoG+bhh6ai+suOQZCxkIklKKvWYH5eIdo522BAdBjv+yx82j88AIgmEEHh55xlk5Zfio+gweLpws3liIRNJ8Y8Tl7D3TC6WjfbHkD6dZMchlWAhE1lY0uUi/GVvGh4J8MS84b1lxyEVYSETWVBhaRUWxiWhs0sbvDeVm83T7/E8ZCILMRoFFm9LQX5JFXbOHwpXJ3vZkUhlOEMmspANRzNw7Hwe3pgQiP7errLjkAqxkIks4PiFfHxw6DwmhnXDzEE9ZMchlWIhE5lZ7s1yPL81GX6eznhrYjA3m6cGsZCJzEhnMGJhfDIqdAZ8MisCTg5824YaxmcHkRm9vT8diZeKsD46DL6ezrLjkMpxhkxkJgdSc/HZ8UzMHtITEwZ0lR2HWgAWMpEZZOaXYtmOMxjQvQNeHRcgOw61ECxkomZWoTNg/uZEtG6t4JNZ4XC042bzZBquIRM1s9d2p+LctVv44qmB6Nahrew41IJwhkzUjLafuoIdidlYNMIXD/fzlB2HWhgWMlEzOXv1Jl5LSMV/+XbCC49ws3lqPBYyqdKVK1cwYsQIBAYGIigoCOvWrZMd6Z6KK3RYEJeEDk72WDcjDK25aRA1AdeQSZXs7Ozw3nvvITw8HLdu3UJERASioqIQGBgoO1odQggs23Ea2UXl2BYzGO7OjrIjUQvFGTKpkpeXF8LDwwEA7du3R0BAAHJyciSnqt/nxzNx8Ow1vPKoPzS93GTHoRaMhUyql5WVheTkZERGRsqOUseprEKs3p+O0UGd8cwwH9lxqIXjkgWpWklJCSZPnowPP/wQLi4udb4eGxuL2NhYAEBeXp5Fs+WXVGJhfBK8O7bF2qkDuGkQPTBFCNGY8Y0aTPQgdDodxo8fj9GjR2PJkiX3Ha/RaKDVai2QDDAYBZ78+0/QZhVh14KhCOrK/Y3pnkx6teYMmVRJCIFnnnkGAQEBJpWxpa07dB4/ZBTgnckhLGNqNlxDJlX64Ycf8NVXX+HIkSMIDQ1FaGgo9u3bJzsWAODouetYfyQD0zTemDawu+w4ZEU4QyZVGjZsGBq5nGYR2UVleHFbCvy7tMfKx4NlxyErwxkykYkq9QY8F58Mg0Fg4xMRaGPPTYOoeXGGTGSiVXt/wekrN/DpE+HwcW8nOw5ZIc6QiUzwzemr2HTiEuYO88GYYC/ZcchKsZCJ7iPj+i0s33kGET074uVH/WXHISvGQia6h7IqPeZvTkJb+9b4eGY47FvzR4bMh2vIRA0QQuDVXT8jI68EX82JRBfXNrIjkZXjyz1RA+JPXsbulKt48ZG+GObnLjsO2QAWMlE9fs6+iTe/ScPwvh5YOMJXdhyyESxkorvcLNNhflwi3J0d8OH0ULTiZvNkIVxDJqrFaBRYsj0F14orsH3eELi1c5AdiWwIZ8hEtfz12K84nH4d/zsuEGE9OsqOQzaGhUxU48TFAqw9mI7xIV54ckhP2XHIBrGQiQBcL67Aoi3J6OXeDmsmh3CzeZKCa8hk8/QGIxZuSUZppR7x/xMJZ0f+WJAcfOaRzXv33+dxMrMQ708bgL6d28uOQzaMSxZk075Nu4ZPv7+ImZE9MCncW3YcsnEsZLJZlwvK8KftKQju5oLXxwfKjkPEQibbVKEzYEF8IgBg4yxuNk/qwDVkskkr96QhNacYf3tSg+5uTrLjEAHgDJls0K6kbMT/dBnPPtQHUYGdZcchuoOFTDbl3G+3sOLrVET6uGHpqL6y4xD9DguZbEZJpR7z4xLh3MYOH80Mgx03myeV4TOSbIIQAi/vPIOs/FJ8FB0Gz/bcbJ7Uh4VMNmHTj1nYeyYXy0b7Y3DvTrLjENWLhUxWL+lyEd7a9wseCfDEvOG9ZcchahALmaxaYWkVFsYlobNLG7w3lZvNk7rxPGSyWkajwOJtKcgvqcLO+UPh6mQvOxLRPXGGTFZrw9EMHDufhzcmBKK/t6vsOET3xUImq3T8Qj4+OHQeE8O6YeagHrLjEJmEhUxWJ/dmOZ7fmgw/T2e8NTGYm81Ti8FCJquiMxixMD4ZlToDPpkVAScHvk1CLQcLmVTrwIED6NevH3x9fbFmzRqTbvP2/nQkXirCmskh8PV0NnNCoubFQiZVMhgMeO6557B//36kpaVhy5YtSEtLu+dtist1+Ox4Jp4a2guPDehqoaREzYeFTKp08uRJ+Pr6onfv3nBwcMCMGTOQkJDQ4PjM/FJcKSpHaPcOeHVsgAWTEjUfRQjRmPGNGnzbhA3HcfF6SVNuSjZKr9dDr9ejTZvqPSd0ej0MBgPaODrWO77KYETOl4tx4expdOvQ1pJRiUxh0jvLjSrkMWPGiPz8/EYnybtViVulpWjbVn0bgZeXlzFXI1kiW0VFBaqqKuHiUn3+cEV5OXQ6Hdq7uNTJUlZWDgWArjgfoaEDzJqrKfLy8uDh4SE7Rh1qzQWoN1tTcyUmJh4UQoy570AhRGP+NFlERMSD3NxsmKvxLJHtxx9/FKNGjbpzedWqVWLVqlX3vI2Tk5O5YzWJWh9LteYSQr3ZHiCXSR3LNWRSpYEDB+LChQvIzMxEVVUVtm7digkTJsiORWRWPEmTVMnOzg4bNmzA6NGjYTAYMGfOHAQFBcmORWRWFivkmJgYS91VozBX41kq29ixYzF27FiTx7u7u5sxTdOp9bFUay5AvdnMncsiZ1kQWYJGo4FWq5Udg6g+Jp1lwTVkIiKVaNZC3rFjB4KCgtCqVas6M5XVq1fD19cX/fr1w8GDB+u9fWZmJiIjI+Hr64vp06ejqqqqOeMBAKZPn47Q0FCEhoaiV69eCA0NrXdcr1690L9/f4SGhkKj0TR7jrv9+c9/Rrdu3e5k27dvX73jmvJx4ge1bNky+Pv7IyQkBBMnTsSNGzfqHWepY3a/Y1BZWYnp06fD19cXkZGRyMrKMluW265cuYIRI0YgMDAQQUFBWLduXZ0x3333HVxdXe88xitXrjR7LuD+j4sQAs8//zx8fX0REhKCpKQks2c6d+7cneMQGhoKFxcXfPjhh78bY8njNWfOHHh6eiI4OPjOdYWFhYiKioKfnx+ioqJQVFRU7203bdoEPz8/+Pn5YdOmTQ8WxNTTMYQJp72lpaWJ9PR08dBDD4lTp07duf7s2bMiJCREVFRUiF9//VX07t1b6PX6OrefOnWq2LJlixBCiHnz5olPPvmkSeeXmGrJkiXizTffrPdrPXv2FHl5eWa9/9reeOMNsXbt2nuO0ev1onfv3uLixYuisrJShISEiLNnz5o928GDB4VOpxNCCPHSSy+Jl156qd5xljhm9zoGt09J+vjjj8W8efOEEEJs2bJFTJs2zayZhBDi6tWrIjExUQghRHFxsfDz86vz2Bw9elSMGzfO7Fnudr/HZe/evWLMmDHCaDSKEydOiEGDBlkwXfVj2rlzZ5GVlfW76y15vL7//nuRmJgogoKC7ly3bNkysXr1aiGEEKtXr673eV9QUCB8fHxEQUGBKCwsFD4+PqKwsLC+u7D8aW8BAQHo169fnesTEhIwY8YMODo6wsfHB76+vjh58mSdF4YjR45gypQpAIDZs2dj9+7dzRmvzv1t374d0dHRZruP5tbYjxM3l1GjRsHOrvr938GDByM7O9vs99kQU45BQkICZs+eDQCYMmUKDh8+DNG490oazcvLC+Hh4QCA9u3bIyAgADk5OWa9z+aSkJCAJ598EoqiYPDgwbhx4wZyc3Mtdv+HDx9Gnz590LNnT4vd592GDx8ONze3311X+3nUUB8dPHgQUVFRcHNzQ8eOHREVFYUDBw40PYipzd2YPwC+A6CpdXkDgCdqXf4cwJS7buMOIKPW5e4AUs2Rr+b7DwegvcfXMwEkAUgEEGOuHLXu788AsgCcAfB3AB3rGTMFwGe1Lv83gA3mznZXhn/VfiwtfczudQwAHKj5byoA71pjLgJwt+Ax6gXgMgCXu65/GEABgNMA9gMIslCeez4uAPYAGFbr8uHaP78WyPd3AAvrud6ix6vmcUutdflGrb8rtS/Xun4pgP+tdfk1AEubmqHRp70pinIIQJd6vrRCCGH+6ZoJTMwYDWDLPb7NMCFEjqIongC+VRQlXQhxzFy5AGwE8H+oPpPl/wC8B2DOg9xfc2W7fcwURVkBQA8groFv0+zHrDGEKR9NNTNFUZwB7ASwWAhRfNeXkwD0FEKUKIoyFsBuAH4WiCX1cbkXRVEcAEwA8Eo9X5Z1vOoQQghFUcx+llmjC1kI8UgT7icH1TPe27xrrqutAEAHRVHshBD6BsY0S0ZFUewATAIQcY/vkVPz3+uKonwNYBCAB3oSm3rsFEX5G6pnLXcz5Tg2iQnH7CkA4wGMFDVTgXq+R7Mfs3qYcgxuj8mueaxdUf38MitFUexRXcZxQohdd3+9dkELIfYpivKJoijuQojGbxDTCCY8LmZ7XpngUQBJQohrd39B1vGq5ZqiKF5CiFxFUbwAXK9nTA6qZ/K3eaN6haBJLHXa2zcAZiiK4qgoig+qX+V+t4hc80N+FNW/kgLAbADmmnE/AiBdCFHvYqiiKO0URWl/++8ARqH612CzqXnAb5vYwP2dAuCnKIpPzcxiBqqPrVkpijIGwEsAJgghyhoYY6ljZsox+AbVzx+g+vl0pKEXkeaiVP87UZ8D+EUI8X4DY7rUjIOiKINQ/fNn1hcKEx+XbwA8qVQbDOCmEMJSi8gN/qYq43jdpfbzqKE+OghglKIoHRVF6Yjq41v/aWSmaOY1mIkAsgFUArgG4GCtr61A9VreOQCP1rp+H4CuNX/vjeqizgCwA4CjmdaKvgTw7F3XdQWwr1aO0zV/zqL613Zzr6N9BeBnVK8hfwPA6+5cNZfHAjhfcyzNnqvmPjMAXAGQUvPnU5nHrL5jAGAlql8wAKBNzfMno+b51NsCx2gYqpebztQ6TmMBPHv7uQZgYc2xOQ3gPwCGWiBXvY/LXbkUAB/XHM+fYaH1YwDtUF2wrrWuk3K8UP2ikAtAV9NhzwDohOr19AsADgFwqxmrwe/fx5hT81zLAPD0g+Ro7Cf1iIjITPhJPSIilWAhExGpBAuZiEglWMhERCrBQiYiUgkWMhGRSrCQiYhUgoVMRKQS/x9zHfHAR+1qFwAAAABJRU5ErkJggg==\n",
      "text/plain": [
       "<Figure size 432x288 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "def relu(x):\n",
    "    \"\"\"\n",
    "    relu 函数\n",
    "    :param x: np.array 格式数据\n",
    "    :return: relu 函数\n",
    "    \"\"\"\n",
    "   \n",
    "    y = np.maximum(0,x)\n",
    "\n",
    "    return y\n",
    "\n",
    "# 绘制 relu 函数\n",
    "plot_activation_function(relu)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "fragment"
    }
   },
   "source": [
    "优点:\n",
    "+ 因为它线性非饱和的形式ReLU在SGD中能够快速收敛。\n",
    "+ 有效缓解了梯度消失的问题。\n",
    "+ 提供了神经网络的稀疏表达能力。\n",
    "\n",
    "缺点:\n",
    "+ 随着训练的进行可能会出现神经元死亡权重无法更新的情况如果发生这种情况那么流经神经元的梯度从这一点开始将永远是0也就是说ReLU神经元在训练中不可逆地死亡了"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### 单层感知机实例"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "我们根据上面的定义可以编写一个简单的感知机模型"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "slideshow": {
     "slide_type": "fragment"
    }
   },
   "outputs": [],
   "source": [
    "def perceptron(x, w, threshold):\n",
    "    \"\"\"\n",
    "    感知机模型\n",
    "    :param x: 输入数据 np.array 格式\n",
    "    :param w: 权重 np.array 格式,需要与 x 一一对应\n",
    "    :param threshold: 阀值\n",
    "    :return: 0或者1\n",
    "    \"\"\"\n",
    "    x = np.array(x)\n",
    "    w = np.array(w)\n",
    "    \n",
    "    #计算信息加权总和\n",
    "    y_sum = \n",
    "    \n",
    "    # 计算输出大于阀值返回 1否则返回 0\n",
    "    output = \n",
    "    return output\n",
    "\n",
    "\n",
    "# 输入数据\n",
    "x = np.array([1, 1, 4])\n",
    "# 输入权重\n",
    "w = np.array([0.5, 0.2, 0.3])\n",
    "# 返回结果\n",
    "perceptron(x, w, 0.8)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {
    "slideshow": {
     "slide_type": "fragment"
    }
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "1"
      ]
     },
     "execution_count": 13,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "def perceptron(x, w, threshold):\n",
    "    \"\"\"\n",
    "    感知机模型\n",
    "    :param x: 输入数据 np.array 格式\n",
    "    :param w: 权重 np.array 格式,需要与 x 一一对应\n",
    "    :param threshold: 阀值\n",
    "    :return: 0或者1\n",
    "    \"\"\"\n",
    "    x = np.array(x)\n",
    "    w = np.array(w)\n",
    "    \n",
    "    #计算信息加权总和\n",
    "    y_sum = np.sum(w * x)\n",
    "    \n",
    "    # 计算输出大于阀值返回 1否则返回 0\n",
    "    output = 1 if y_sum > threshold else 0\n",
    "    return output\n",
    "\n",
    "\n",
    "# 输入数据\n",
    "x = np.array([1, 1, 4])\n",
    "# 输入权重\n",
    "w = np.array([0.5, 0.2, 0.3])\n",
    "# 返回结果\n",
    "perceptron(x, w, 0.8)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 3 神经网络"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### 3.1 神经网络的结构"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "fragment"
    }
   },
   "source": [
    "神经网络相互连接形成一个无环图的神经元集合。\n",
    "\n",
    "神经网络通常由不同的神经元层组织而成常见的层类型有:\n",
    "+ 全连接层\n",
    "+ 卷积层\n",
    "+ 池化层\n",
    "+ Dropout层\n",
    "+ RNN层\n",
    "+ ......"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "skip"
    }
   },
   "source": [
    "<br>"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "首先我们来看一个完全由全连接层联结起来的神经网络也被称为多层感知器(Multilayer Perceptrons, MLP)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "fragment"
    }
   },
   "source": [
    "<center><video src=\"http://files.momodel.cn/nn_fullconnect.mp4\" controls=\"controls\" width=800px></center>"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "神经网络架构示意图如下:\n",
    "\n",
    "<img src=\"http://imgbed.momodel.cn//20200103111837.png\" width=400>\n",
    "\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "fragment"
    }
   },
   "source": [
    "与感知机的不同神经网络:\n",
    "+ 输入层和输出层之间存在若干隐藏层。\n",
    "+ 每个隐藏层中包含若干神经元"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### 3.2 补充材料梯度下降与误差反向传播"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "#### 正向传播  反向传播"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "fragment"
    }
   },
   "source": [
    "\n",
    "\n",
    "<img src=\"http://imgbed.momodel.cn//20200103111837.png\" width=400>\n",
    "\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "fragment"
    }
   },
   "source": [
    "+ 前馈神经网络接收一个输入 $x$ 并产生一个输出 $\\hat{y}$ 信息正向流过网络称为**正向传播(forward propagation)**"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "fragment"
    }
   },
   "source": [
    "+ 训练过程中正向传播可以一直继续下去直到产生一个标量代价\n",
    "$J(\\theta)$ ."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "fragment"
    }
   },
   "source": [
    "+ 反向传播允许信息从代价出发反向流过网络"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "#### 误差反向传播"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "fragment"
    }
   },
   "source": [
    "+ **核心问题**给定某个函数 计算f在点x处的梯度$\\epsilon{f(x)}$"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "fragment"
    }
   },
   "source": [
    "+ 在神经网络中 对应于**损失函数**而输入x 则是由**训练数据**和神经网络**权重参数**构成"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "fragment"
    }
   },
   "source": [
    "+ 反向传播通过递归地应用链式法则来计算表达式梯度的一种方法"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "fragment"
    }
   },
   "source": [
    "反向传播指的仅仅是计算梯度的方法并不是多层神经网络的整个学习算法"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "简单表达式与梯度解释:\n",
    "\n",
    "梯度是一个向量表示函数在该点处沿着该方向变化最快变化率最大\n",
    "\n",
    "而对于单变量的情况下梯度也就等同于它的导数。\n",
    "\n",
    "<img src=\"https://imgbed.momodel.cn/20200327040148.png\" width=800>\n",
    "\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "复合表达式和链式法则:\n",
    "\n",
    "<img src=\"https://imgbed.momodel.cn/20200327040301.png\" width=800>\n",
    "\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "反向直播的直观理解:\n",
    "$f(x,y,z) = (x+y)z  q=x+y f=qz$"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "fragment"
    }
   },
   "source": [
    "<img src=\"https://imgbed.momodel.cn/20200327040327.png\" width=600>"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### 3.3 神经网络实现MNIST手写数字分类"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "slide"
    }
   },
   "source": [
    "我们接下来依旧使用MNIST手写数字数据集来实现一个神经网络的分类方法"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "fragment"
    }
   },
   "source": [
    "采用 **keras** 框架搭建一个神经网络解决手写体数字识别问题  \n",
    "1. 导入相关包"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {
    "slideshow": {
     "slide_type": "fragment"
    }
   },
   "outputs": [],
   "source": [
    "# 数据集 mnist\n",
    "from tensorflow.keras.datasets import mnist\n",
    "# 序列模型 Sequential\n",
    "from tensorflow.keras.models import Sequential\n",
    "# 神经网络层 Dense,Activation,Dropout\n",
    "from tensorflow.keras.layers import Dense, Activation, Dropout\n",
    "# 工具 np_utils\n",
    "from tensorflow.python.keras.utils.np_utils import to_categorical\n",
    "\n",
    "import warnings\n",
    "warnings.filterwarnings(\"ignore\")\n",
    "\n",
    "!mkdir -p ~/.keras/datasets\n",
    "!cp ./mnist.npz ~/.keras/datasets/mnist.npz"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "2. 下载 **MNIST** 数据集并将它们转换为模型所能使用的格式"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {
    "slideshow": {
     "slide_type": "fragment"
    }
   },
   "outputs": [],
   "source": [
    "# 获取数据\n",
    "(X_train, y_train),(X_test,y_test) = mnist.load_data()\n",
    "\n",
    "# 将训练集数据形状从60000,28,28修改为60000,784)\n",
    "X_train = X_train.reshape(len(X_train), -1)\n",
    "X_test = X_test.reshape(len(X_test), -1)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "fragment"
    }
   },
   "source": [
    "通过plot查看数据集情况"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {
    "slideshow": {
     "slide_type": "fragment"
    }
   },
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAToAAAEyCAYAAABqERwxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xm0FMX1B/DvlQCiiAKaJ24sCkFUFNwQOUAUN1xwiagBBUPE4woeNeISl7iBJp7gLiqCygkhQQGNBAmCuCARDf4iiwIq8pRF3FhUCFq/P6bnvvseM8zW3dPd8/2c8867r2bpGq9TdHVVV4lzDkRESbZduStARBQ0NnRElHhs6Igo8djQEVHisaEjosRjQ0dEiceGjogSr6SGTkROFJEPRGSpiAzzq1JUOOYiGpiHaJJiJwyLSD0AHwI4DkA1gLcBnOecW+hf9SgfzEU0MA/R9bMSXnsEgKXOuY8AQETGA+gDIGtSRYS3YZRmrXNutwzlBeWCeSiZL3nwnsNclCZbLmoppeu6J4AV5u9qr6wWERksIvNEZF4Jx6KU5VnKc+aCefBV0XkAmAufZctFLaWc0eXFOTcKwCiA/3qVE/MQHcxF+Eo5o/sMwN7m7728MgofcxENzENEldLQvQ2grYi0FpEGAM4FMMWfalGBmItoYB4iquiuq3Nui4hcDmAagHoARjvnFvhWM8obcxENzEN0FT29pKiD8XpEqd5xzh1W6pswDyXzJQ8Ac+GDvHLBOyOIKPHY0BFR4rGhI6LEY0NHRIkX+IRholIceuihGl9++eUaX3DBBQCAp59+WsseeOABjd99990QakdxwTM6Iko8NnRElHgVOY+uXr16Gu+88845n2+7TDvssAMA4Be/+IWWXXbZZRr/8Y9/1Pi8887T+IcfftB4+PDhGt922235VhuokHl0hxxyiMavvPKKxk2aNNnm67799luNmzdv7n/FanAeXQGOPfZYjceNG6dxjx49NP7ggw+KfXvOoyMiAtjQEVEFSMyo6z777KNxgwYNNO7atSsAoFu3blq2yy67aHzWWWcVdbzq6mqN77//fo3POOMMjdevX6/xe++9p/Grr75a1DGT7IgjjtB44sSJGttLC/YyS/q/7ebNm7XMdle7dOmisR2Btc+Pm+7du2tsP+vzzz9fjurk7fDDD9f47bffLksdeEZHRInHho6IEi/WXddso3P5jKQW66effgIA3HTTTVq2YcMGje2o0sqVKzX++uuvNS5hhCn20qPWANC5c2eNn332WY1btGiR832WLFkCALjnnnu0bPz48Rq/8cYbGttc3X333QXWODp69uypcdu2bTWOYtd1u+1qzqFat26tccuWLTUWkfDqE9qRiIjKhA0dESVerLuun376qcZffvmlxsV2XefOnavxN998o/Evf/lLjdOjds8880xRx6h0jz32mMZ2QnWh0t3exo0ba5kdzbbdvI4dOxZ9nChJ398LAHPmzCljTXKzlx8uuugije0lisWLF4dWH57REVHisaEjosSLddf1q6++0vjaa6/V+JRTTtH4P//5D4Dak3qt+fPna3zcccdpvHHjRo0POOAAjYcMGVJCjStXermlk08+WcuyjbrZLugLL7ygsb2P+PPPPwdQk1+g9sj2Mccck/M4cWNHMqPuiSeeyFieHi0PW87/ciIyWkTWiMj7pqyZiEwXkSXe76bBVpM8rZiLSGAeYiaffyLGADixTtkwADOcc20BzPD+puCtBXMRBcxDzOTsujrnZotIqzrFfQD09OKxAGYBuM7HehVs0qRJGtvJw+l7Ig8++GAtGzRokMa2O2S7q9aCBTVbcw4ePLj0yhZvA4Cv6pRFLhdpdkL39OnTAdReasneuzp16lSN7WisXcrHTvxNd42++OILLbP3E6cndgO1u8t2knIJqxCHmof0qHFVVZUfbxeKbDMf0v8fhK3Ya3RVzrn0tP9VALJmQEQGAyhr65BweeWCeQgcvxMRVvJghHPObWvxQOfcKACjgPAWGVy3bt1WZXZRRsvO8fnrX/+qsT0jiItt5SKsPLRr105jO0CU/hd+7dq1WmZvkRs7dqzG9pa6f/zjHxnjQjRq1Ejjq6++WuN+/foV9X65+P2d6N27N4DanyOK7Bmnve3L+uyzz8KqTi3FDuOsFpEWAOD9XuNflahAzEU0MA8RVmxDNwXAAC8eAGCyP9WhIjAX0cA8RFjOrquI/AWpi6y7ikg1gFsADAcwQUQGAVgOoG+QlfTDrbfeqrHdQs9e7O7Vq5fGL7/8cij1KlBrAHMQsVw0bNhQYzu4k+5yATWDQvY2pnnz5mkcVrfMLtBaglDzYPcnSbMDZFFhc2+7sR9++KHGdjHaMOUz6prthsRjs5RTcD7OshEIcxEu5iFm4jPVmoioSLG+BawQdo6cHWm1c6kef/xxjWfOnKmx7WI99NBDAGrPAat0nTp10th2V60+ffoA4H4ZfinH3gt2DuSJJ9bMl+7fvz8A4Pjjj8/4uttvv11juypQmHhGR0SJx4aOiBKvYrqu1rJlyzQeOHCgxk899ZTG559/fsZ4xx13BAA8/fTTWmYnvlai++67T2O7UojtpobdZbUrfcRx8ncuzZo1K+j59hbIdI7sLIO99tpLY7tdqJ1Ubf+bfv/99xqnF6zdtGmTlv3sZzVNyzvvvFNQXYPAMzoiSjw2dESUeBXZdbXsVnF2UUDbHTv22JrpUXfddReA2tu23XnnnRqX616+sNnFTe0qJXY0esqUKaHWybLdVVsnu9BqXKS7ifZzPProoxrfcMMNOd/D7puR7rpu2bJFy7777juNFy5cqPHo0aM1trMP7KWI1atXAwCqq6u1zE4AD3NviGx4RkdEiceGjogSr+K7rtb77+vK2Ojbt+ZWxVNPPVXj9MjsxRdfrGV213S770SS2a6JHaVbs6Zm0Q677FVQ7H229n5myy7Eev311wddJd9deumlAIDly5drWdeuXQt6D7s1aHqR2kWLFmnZW2+9VXT90ovR7rbbblr20UcfFf1+QeAZHRElHhs6Iko8dl2zsPfkPfPMMxqn9yqwEyK7d++usd0hftasWcFVMKLspNEgJ1Knu6x2Hwm7orEdAfzTn/6ksV29OG5GjBhR7ipkZGclpE2cOLEMNcmOZ3RElHg8ozPsXKNf/epXGh9++OEa2zO5NDvvaPbs2QHVLh6CnDtn5+ulz97OOeccLZs8uWZR37POOiuwelBudn5qFPCMjogSjw0dESVeRXZd7Rr8l19+ucZnnnmmxrvvvvs23+PHH3/U2F50T+JKGZnYVUpsfPrpp2s8ZMiQko9z1VVXafz73/9e4/T2iePGjdMyux8FkZXzjE5E9haRmSKyUEQWiMgQr7yZiEwXkSXe76bBV7fitWMeIqE+vxPxkk/XdQuAq51zHQB0AXCZiHQAMAzADOdcWwAzvL8pWNXMQ2TwOxEj+ewCthLASi9eLyKLAOwJoA9S2yACwFgAswBcF0gtS5Dugp53Xs1mZra72qpVq4LeL72Cg12xJMRVOr4DopEHu5KGjW2X//7779c4vQrGl19+qWVdunTR2C5uaheJtAtC2tuYpk2bBgB4+OGHi/sApfmfc+5dIBq5iAp7CaNdu3Yal3J7mV8KGowQkVYAOgGYC6DKawQBYBWAqiwvI58xD9HBXMRD3oMRItIYwEQAQ51z62zr7ZxzIpJxWywRGQxgcKkVpRTmITqYi/jIq6ETkfpIJXScc+45r3i1iLRwzq0UkRYA1mR6rXNuFIBR3vsEtkeg3Rm8Q4cOGj/44IMAgPbt2xf0ful18AHg3nvv1Tg9KbVMo6uCiOehXr16GqdX3QBqJvCuW7dOy+yqL9m8+eabGtstKG+++eaS6lmqOHwnwmYvYdj9JaIgn1FXAfAkgEXOufvMQ1MADPDiAQAm130t+a4lmIeo4HciRvI5ozsawPkA/isi6XWobwAwHMAEERkEYDmAvlleT/5pDuAY5qHsGoPfiVjJZ9T1daS6TJlsvWxBwOw2b4899pjG9j7INm3a5P1+tmtkV7lIj+oBtbd2K7N3nHOHZSgPPQ9z5szR2O4ab+8LttKjsfYSg2VHY8ePH6+xH5OOA7DBOReZ70QUHXXUURqPGTOmfBXxRKsjTUQUADZ0RJR4kb3X9cgjj9TYLqh4xBFHaLznnnvm/X52Ozc7kTW9fSEAbNy4seB6Viq7sKW9R9jupWEXxcxk5MiRGj/yyCMaL1261I8qUsjs9Jqo4RkdESUeGzoiSrzIdl3POOOMjHE2dpXfF198UeP0buR2RNXuB0Gls8tU2S0Hs20/SMkydepUAMDZZ59d5ppkxzM6Iko8sbdtBH6wBN3uUibZ5tEVhHkomS95AJgLH+SVC57REVHisaEjosRjQ0dEiceGjogSjw0dESUeGzoiSjw2dESUeGzoiCjxwr4FbC2Ajd7vJNsVwXzGlj69z1qkVsANqp5REsRn9CsPAL8TpcorF6HeGQEAIjLPr1nlURWXzxiXepYiDp8xDnUsVbk/I7uuRJR4bOiIKPHK0dCNKsMxwxaXzxiXepYiDp8xDnUsVVk/Y+jX6IiIwsauKxElHhs6Ikq8UBs6ETlRRD4QkaUiMizMYwdFRPYWkZkislBEFojIEK+8mYhMF5El3u+m5a5rGvMQHcxFSJxzofwAqAdgGYA2ABoAeA9Ah7COH+DnagGgsxfvBOBDAB0A3ANgmFc+DMCIcteVeYhOHpiLcHMR5hndEQCWOuc+cs5tBjAeQJ8Qjx8I59xK59y7XrwewCIAeyL12cZ6TxsL4PTy1HArzEN0MBchCbOh2xPACvN3tVeWGCLSCkAnAHMBVDnn0ttjrQJQVaZq1cU8RAdzERIORvhERBoDmAhgqHNunX3Mpc7VOY8nBMxDdEQpF2E2dJ8B2Nv8vZdXFnsiUh+phI5zzj3nFa8WkRbe4y0ArClX/epgHqKDuQhJSQ1dgSNGbwNoKyKtRaQBgHMBTCnl+FEgIgLgSQCLnHP3mYemABjgxQMATA64HvnmgnkIth78TkQkF7WEOWIEoDdSIzDLANxY7tEhP34AdEPqFPz/AMz3fnoDaA5gBoAlAP4FoFmAdSgoF8xDNPLAXASXi63qVMKHOQrANPP39QCuz/Eax5+Sfr7wIxcR+Bxx//ElD8xFcLmo+1NK1zWvESMRGSwi80RkXgnHopTlWcpz5oJ58FXReQCYC59ly0Utga8w7JwbBW/lAhFxQR+PMmMeooO5CF8pZ3SJHTGKIeYiGpiHiCqloUvkiFFMMRfRwDxEVNFdV+fcFhG5HMA0pEabRjvnFvhWM8obcxENzEN0hbrwJq9HlOwd58MGI8xDyXzJA8Bc+CCvXPAWMCJKPDZ0RJR4bOiIKPHY0BFR4rGhI6LEY0NHRInHho6IEi/we12T6qabbtL4tttu03i77Wr+7ejZs6fGr776aij1IgrKTjvtpHHjxo01PvnkkwEAu+22m5bdd1/NMnSbNm0KoXbbxjM6Iko8NnRElHjsuhZo4MCBAIDrrrtOy3766aeMzw3z9joiv7Rq1Upj+//5UUcdpfGBBx64zfdo0aKFxldeeaV/lSsSz+iIKPHY0BFR4rHrWqCWLVsCALbffvsy1yT+jjzySI379++vcY8ePTQ+4IADMr72mmuuAQB8/vnnWtatWzeNn332WY3nzp1bemUTqH379hoPHTpU4379+mncqFEjjVObe6WsWFGzYvz69esBAPvvv7+W9e3bV+OHH35Y48WLF5da7aLwjI6IEo8NHRElHruueejVq5fGV1xxxVaP29PxU045RePVq1cHW7EYOuecczQeOXKkxrvuuqvGtos0a9Ysje2E1HvvvXer97avs88999xzi69wQuy8884ajxgxAkDtXNjJwNksWbJE4xNOOEHj+vXrA6j9PbD5tHG58IyOiBKPDR0RJR67rlnYEbynnnpKY9sFSLPdqOXL89pPtyL87Gc1/3sddlhqWf/HH39cy3bYYQeNZ8+erfHtt9+u8euvv65xw4YNNZ4wYQIA4Pjjj8947HnzuDe0dcYZZ2j829/+Nu/XLVu2TOPjjjtOYzvqut9++5VYu+DlPKMTkdEiskZE3jdlzURkuogs8X43Dbaa5GnFXEQC8xAz+XRdxwA4sU7ZMAAznHNtAczw/qbgrQVzEQXMQ8zk7Lo652aLSKs6xX0A9PTisQBmAbgOCTJgwACN99hjj60et6OBTz/9dBhVAoANAL6qUxbZXNhJwE888cRWj0+fPl1jOwK4bt26jO9nn5Opy1pdXa3x2LFjC6tsYWKVBwA4++yzt/n4J598ovHbb7+tsb3X1XZXLTtROKqKvUZX5Zxb6cWrAFRle6KIDAYwuMjjUG555YJ5CBy/ExFW8mCEc85taxNe59woAKOA6G/Wa+f7/OY3v9HYrk7yzTffAADuuOOO8CqWp23lIqw82IGEG264wR4fQO3bgezipdnO4qwbb7xxm4/bVTK++OKL3JUNSBS/ExdddJHGgwen2tiXX35Zy5YuXarxmjVrCnrvqqqsbXpkFDu9ZLWItAAA73dh/2XIT8xFNDAPEVZsQzcFQPoi1gAAk/2pDhWBuYgG5iHCcnZdReQvSF1k3VVEqgHcAmA4gAkiMgjAcgB9s79DtNlFBidOnJjz+Q888AAAYObMmUFVaVtaA5iDiOXi5ptv1th2Vzdv3qzxtGnTANS+uP39999nfD+7MowddNhnn300Tt/uZS8hTJ4cWtsSyTxsi13l5dZbb/X1ve2CnFGVz6jreVkeOtbnulBuHzvnDstQzlyEi3mIGd4CRkSJV/G3gJ14Ys28z44dO2Z8zowZMzS2K25Usl122UXjSy+9VGO7T0a6uwoAp59++jbfz95GNG7cOI0PPfTQjM//+9//DgC455578qwx5cuOXu+44445n3/QQQdtVfbmm29qPGfOHH8qVgKe0RFR4rGhI6LEq8iuq+1GDR8+PONz7KoZ9nawb7/9NriKxUiDBg00zrawou0C/fznPwcAXHjhhVp22mmnaWy3z7O7wNuusI3Te0Js3Lix4LpXuvSqMR06dNCyW265RePevXtnfN1229WcF2Xa4tOO7No8//jjj8VX1ic8oyOixGNDR0SJVzFd10InBn/00Ucac++HrdnJwPa+UrtXw8cff6yx7XZmYrs99r5Xu+P72rVrNX7hhRcKrHHlSe/lAACdOnXSOP3/v/1vaydv21zYEVM7Q8EumppmF1o988wzNbYzFez/N2HiGR0RJR4bOiJKvIrputp7LDONGNWVbTSWUtLLVQG1R7FffPFFjZs1a6Zxeu8Bez/qmDFjNP7qq5p1LMePH6+x7V7ZcsrMjobbruZzzz231XNvu+02jV955RWN33jjDY1tDu1z7Ch5mr1scffdd2v86aefajxp0iSNN23alOVT+I9ndESUeGzoiCjxEt91PeSQQwBk3xbPst2qDz74ILA6Jc3cuXM1tt2XQnTv3l3jHj16aGwvM9iRcKphR1dtd/Taa6/N+PypU6cCqFlyDKh9KcLm8KWXXtLY3tNqR0/T9xvb7myfPn00tvcu/+tf/9J4xIgRGn/99ddb1XP+/PkZ618MntERUeIl/owuvS5+06aZt9l86623NB44cGAYVaIMGjVqpLE9i7Pz7zgYUaNevXoa2306rrnmGo3t7XHDhtXsvpj+72jP4tIbjAPAgw8+qLGdf7dkyRKNL7nkEo3Ti9A2adJEy7p27apxv379NLa3/dld4Kz0bmOtW7fO+HgxeEZHRInHho6IEi/xXdfmzZsDyD53zm6/t2HDhlDqRFuzi3RSbuktC4Ha3dXvvvtO44svvlhju7Vhly5dANReYeSkk07S2F5G+MMf/qDxU089pXGmzaztrXv//Oc/M8bnnVezM8Ovf/3rrd4DAK666qqM5aXIeUYnInuLyEwRWSgiC0RkiFfeTESmi8gS73fmi2Dkp3bMQyTU53ciXvLpum4BcLVzrgOALgAuE5EOAIYBmOGcawtghvc3BauaeYgMfidiRHKtKrHVC0QmA3jQ++npnFvpbdg7yzn3ixyvDWVXcnuKnR5JzdZ1bdOmjcbLly8PtF4+eCe9+1Qc8lCIE044QWM7d8v+/2lvB7MrppTBO3YXsHLkYuXKlRrbeW/2tqrFixdrbPd+sPtzZGK3Q7S3ckVhAc0M3smyI1stBV2jE5FWADoBmAugyjmX/q+9CkBVltcMBjA402NUHOYhOpiLeMh71FVEGgOYCGCoc26dfcyl/tnN+C+Tc26Uc+6wfFpdyo15iA7mIj7yOqMTkfpIJXSccy69DMJqEWlhTtPXBFXJfKRv9QKAXr16aZzustpbVh566CGNY7aopiDieSiWvYQQB+X+TqxatUpj23Vt2LChxgcffHDG16YvDcyePVvL7Koin3zyicYR7a4WLJ9RVwHwJIBFzrn7zENTAKR3jRkAYHLd15LvWoJ5iAp+J2IknzO6owGcD+C/IpK+y/YGAMMBTBCRQQCWA+gbTBXJaA7gGOah7BqD34lYydnQOedeR6rLlMmx/laneHbn+N13332rxz/77DON7QTLmMk2whSZPBTrtdde0zjXtnoRsME5V9bvhF3txS582rlzZ43XrKnpOY8ePVrj9Eoh5dq/oRx4CxgRJR4bOiJKvMTf60rx8P7772tslwOyo7H77ruvxmWeMFx269ev1/iZZ57JGFMNntERUeKxoSOixEtM19Xe1/fmm29q3K1bt3JUh0pw1113afzEE09ofOedd2p8xRVXAAAWLlwYXsUotnhGR0SJV/DqJSUdLIKrZsRMXis15BL1PNi9ByZMmKCxvbUvvSGzXTzS7pEQMF/yAEQ/FzGQVy54RkdEiceGjogSj13XeKmIrqtlu7F2MCK93V7Hjh21LMSBCXZdo4NdVyIigA0dEVUAdl3jpeK6rhHFrmt0sOtKRASwoSOiChD2LWBrAWz0fifZrgjmM7b06X3WIrUCblD1jJIgPqNfeQD4nShVXrkI9RodAIjIvKTvfhSXzxiXepYiDp8xDnUsVbk/I7uuRJR4bOiIKPHK0dCNKsMxwxaXzxiXepYiDp8xDnUsVVk/Y+jX6IiIwsauKxElHhs6Ikq8UBs6ETlRRD4QkaUiMizMYwdFRPYWkZkislBEFojIEK+8mYhMF5El3u+m5a5rGvMQHcxFSJxzofwAqAdgGYA2ABoAeA9Ah7COH+DnagGgsxfvBOBDAB0A3ANgmFc+DMCIcteVeYhOHpiLcHMR5hndEQCWOuc+cs5tBjAeQJ8Qjx8I59xK59y7XrwewCIAeyL12cZ6TxsL4PTy1HArzEN0MBchCbOh2xPACvN3tVeWGCLSCkAnAHMBVDnnVnoPrQJQVaZq1cU8RAdzERIORvhERBoDmAhgqHNunX3Mpc7VOY8nBMxDdEQpF2E2dJ8B2Nv8vZdXFnsiUh+phI5zzj3nFa8WkRbe4y0ArClX/epgHqKDuQhJSQ1dgSNGbwNoKyKtRaQBgHMBTCnl+FEgIgLgSQCLnHP3mYemABjgxQMATA64HvnmgnkIth78TkQkF7WEOWIEoDdSIzDLANxY7tEhP34AdEPqFPz/AMz3fnoDaA5gBoAlAP4FoFmAdSgoF8xDNPLAXASXi63qVMKHOQrANPP39QCuz/Eax5+Sfr7wIxcR+Bxx//ElD8xFcLmo+1NK1zWvESMRGSwi80RkXgnHopTlWcpz5oJ58FXReQCYC59ly0Utga8w7JwbBW/lAm4EUj7MQ3QwF+Er5YwusSNGMcRcRAPzEFGlNHSJHDGKKeYiGpiHiCq66+qc2yIilwOYhtRo02jn3ALfakZ5Yy6igXmILm5gHS/cwDoauIF1dHADayIigA0dEVUANnRElHhs6Igo8QKfMBxFI0eO1PjKK6/U+P3339f4lFNO0Xj58rwmXxNRRPGMjogSjw0dESVexXRdW7VqpXH//v01/umnnzTef//9NW7fvr3G7Lr6p127dhrXr19f4+7du2v88MMPa2zzU4jJk2uWOjv33HM13rx5c1Hvl3Q2F127dtX4rrvu0vjoo48OtU5+4hkdESUeGzoiSryK6bp+8cUXGs+ePVvj0047rRzVqQgHHHCAxgMHDgQAnH322Vq23XY1/87uscceGtvuarG3KNq8PvrooxoPHTpU43Xrau3XUtF23nlnjWfOnKnxqlWrNN59990zlscBz+iIKPHY0BFR4lVM13Xjxo0acxQ1HHfffbfGvXv3Lls9LrjgAo2ffPJJjd94441yVCdWbHeVXVcioghjQ0dEiVcxXddddtlF44MPPriMNakc06dP1zhT13XNmpqN2m2X0o7GZpswnJ7U2qNHj5LrSdml9qKOP57REVHisaEjosSrmK7rDjvsoPE+++yT8/mHH364xosXL9aYI7b5e+SRRzSeNGnSVo//73//07jQUbwmTZoAqL20lp10bNljz5vHPaMLYSdsb7/99mWsSWlyntGJyGgRWSMi75uyZiIyXUSWeL+bBltN8rRiLiKBeYiZfLquYwCcWKdsGIAZzrm2AGZ4f1Pw1oK5iALmIWZydl2dc7NFpFWd4j4AenrxWACzAFznY7189/nnn2s8ZswYjW+99daMz7fl33zzjcYPPvig31UrxAYAX9Upi2wutmzZovGKFSt8fe8TTjgBANC0ae4Tp+rqao03bdrkx+FjlQe/HHZYza6Cb731VhlrUrhir9FVOedWevEqAFXZnigigwEMLvI4lFteuWAeAsfvRISVPBjhnHPb2oTXOTcKwCggOpv13n777RpnO6OLo23lIop5KJRdQPOiiy4CADRq1Cjn626++ebA6pRJHL8T9uz722+/1diuarLvvvuGWic/FTu9ZLWItAAA7/eaHM+n4DAX0cA8RFixDd0UAAO8eACAydt4LgWLuYgG5iHCcnZdReQvSF1k3VVEqgHcAmA4gAkiMgjAcgB9g6xkkPK53ShCWgOYg4TmIq1fv34aDxtWM3i53377aWz3OMhk/vz5Gtv5ej5JXB7sgNtrr72msd32M87yGXU9L8tDx/pcF8rtY+fcYRnKmYtwMQ9c6VTeAAAG9UlEQVQxw1vAiCjxKuYWsGz82J+AMrNbTJ5//vkAgF69euV8Xbdu3TTOlRO774Pt5r700ksaf//99zmPScnGMzoiSjw2dESUeBXfdSV/HXjggRpPmTJF43xWjCmGHSEcNWpUIMeglObNm5e7CkXjGR0RJR4bOiJKPHZdKTB2v4FC9h4oZBK3ndB60kknaTx16tS8j0f5Oe2008pdhaLxjI6IEo8NHRElXsV3XfPpJnXv3l3jMi+8GXl2D4eePXtq3L9/fwDAtGnTtOyHH34o6L0HDRqk8RVXXFFkDSmXmTNnapyUe115RkdEiceGjogST8K8vzMqq6laP/74o8b5/Lfo2LEjAGDhwoWB1Wkb3smyakZBopiHfNjVbr/88sutHj/11FM1DnjU1Zc8ANHMxVlnnaXx3/72N43tPcMdOnTQuMxbgOaVC57REVHiVfxgxKOPPqrxxRdfnPP5gwen9jQZOnRoYHWizNI7f1Gw7P4Rlp0L2bBhw7Cq4wue0RFR4rGhI6LEq/iu6+LFi8tdhViyezYcf/zxGr/yyisa+7Hg5YUXXqjxyJEjS34/ym3y5Jp9fez3o3379hrbSzeXXnppOBUrQc4zOhHZW0RmishCEVkgIkO88mYiMl1Elni/c2+ZTqVqxzxEQn1+J+Iln67rFgBXO+c6AOgC4DIR6QBgGIAZzrm2AGZ4f1OwqpmHyOB3IkYKnkcnIpMBPOj99HTOrfQ27J3lnPtFjtdGbs6Q9eGHH2qcbVfy9C1jduu9ZcuWBVuxGjpnqBx5sHs53HjjjRofd9xxGrdu3VrjFStW5P3ezZo107h3794aP/DAAxrvtNNOW73Odo/t6hr2NqYA1Jq7leTvxJ///GeN7WWEqqoqjQu9lc9nec2jK+ganYi0AtAJwFwAVc65ld5DqwBUZXnNYACDCzkObRvzEB3MRTzkPeoqIo0BTAQw1Dm3zj7mUqeFGf9lcs6Ncs4d5tdM8krHPEQHcxEfeZ3RiUh9pBI6zjn3nFe8WkRamNP0NUFVMiwLFizQuE2bNhmfk2shyIAJypgHu3KL3RvC+t3vfqfx+vXr835v2/3t3LmzxtkurcyaNQsA8Mgjj2hZwN3VWirlO2HZXGzevLmMNSlcPqOuAuBJAIucc/eZh6YAGODFAwBMrvta8l1LMA9Rwe9EjORzRnc0gPMB/FdE5ntlNwAYDmCCiAwCsBxA32CqSEZzAMcwD2XXGPxOxErOhs459zpSXaZMjvW3OuVlt8uzK2FESLYRpsjk4ZJLLvH1/dasqen9vfDCCxoPGTIEQNlG/DY45yriO2E1adJE4z59+mj8/PPPl6M6BeEtYESUeGzoiCjxKv5eV8suprlo0SKN999//3JUJ3IGDhyosd2zYcCAARmenZudaP3dd99p/Nprr2lsLyfY/SgoHH371lxm3LRpk8b2+xEHPKMjosRjQ0dEiceuq2HXvj/ooIPKWJNomj9/vsZ2aZ5///vfGt9xxx0aN21as3jHpEmTAADTp0/XMrsc0KpVq/ytLPli9uzZGttLOH4swRUmntERUeJV/C5gMVPRu4BFSKJ3AYsZ7gJGRASwoSOiCsCGjogSjw0dESUeGzoiSjw2dESUeGzoiCjx2NARUeKFfQvYWgAbvd9JtiuC+YwtfXqftUitgBtUPaMkiM/oVx4AfidKlVcuQr0zAgBEZF7Sdz+Ky2eMSz1LEYfPGIc6lqrcn5FdVyJKPDZ0RJR45WjoRuV+SuzF5TPGpZ6liMNnjEMdS1XWzxj6NToiorCx60pEiceGjogSL9SGTkROFJEPRGSpiAwL89hBEZG9RWSmiCwUkQUiMsQrbyYi00Vkife7aa73CgvzEB3MRUicc6H8AKgHYBmANgAaAHgPQIewjh/g52oBoLMX7wTgQwAdANwDYJhXPgzAiHLXlXmITh6Yi3BzEeYZ3REAljrnPnLObQYwHkCfEI8fCOfcSufcu168HsAiAHsi9dnGek8bC+D08tRwK8xDdDAXIQmzodsTwArzd7VXlhgi0gpAJwBzAVQ551Z6D60CUFWmatXFPEQHcxESDkb4REQaA5gIYKhzbp19zKXO1TmPJwTMQ3REKRdhNnSfAdjb/L2XVxZ7IlIfqYSOc8495xWvFpEW3uMtAKwpV/3qYB6ig7kISZgN3dsA2opIaxFpAOBcAFNCPH4gREQAPAlgkXPuPvPQFAADvHgAgMl1X1smzEN0MBdh1ckbAQnnYCK9AfwZqdGm0c65O0M7eEBEpBuA1wD8F8BPXvENSF2TmABgH6SWROrrnPuqLJWsg3mIRh4A5iKsXPAWMCJKPA5GEFHisaEjosRjQ0dEiceGjogSjw0dESUeGzoiSjw2dESUeP8PgT8jcWwmkVIAAAAASUVORK5CYII=\n",
      "text/plain": [
       "<Figure size 360x360 with 9 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "import matplotlib.pyplot as plt\n",
    "# 查看一些图片\n",
    "def plot_images(imgs):\n",
    "    \"\"\"绘制几个样本图片\n",
    "    :param show: 是否显示绘图\n",
    "    :return:\n",
    "    \"\"\"\n",
    "    sample_num = min(9, len(imgs))\n",
    "    img_figure = plt.figure(1)\n",
    "    img_figure.set_figwidth(5)\n",
    "    img_figure.set_figheight(5)\n",
    "    for index in range(0, sample_num):\n",
    "        ax = plt.subplot(3, 3, index + 1)\n",
    "        ax.imshow(imgs[index].reshape(28, 28), cmap='gray')\n",
    "        ax.grid(False)\n",
    "    plt.margins(0, 0)\n",
    "    plt.show()\n",
    "\n",
    "\n",
    "plot_images(X_train)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "对图像数据进行数据处理"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {
    "slideshow": {
     "slide_type": "fragment"
    }
   },
   "outputs": [],
   "source": [
    "# 将数据集图像像素点的数据类型从 uint8 修改为 float32\n",
    "X_train = X_train.astype('float32')\n",
    "X_test = X_test.astype('float32')\n",
    "\n",
    "# 把数据集图像的像素值从 0-255 放缩到[-1,1]之间\n",
    "X_train = (X_train - 127) / 127\n",
    "X_test = (X_test - 127) / 127\n",
    "\n",
    "# 数据集类别个数\n",
    "nb_classes = 10\n",
    "\n",
    "#  y_train  y_test 变成了 one-hot 的形式即之前是 0-9 的一个数值 \n",
    "# 现在是一个大小为 10 的向量它属于哪个数字就在哪个位置为 1其他位置都是 0。\n",
    "y_train = to_categorical(y_train, nb_classes)\n",
    "y_test = to_categorical(y_test, nb_classes)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "3. 搭建神经网络模型"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {
    "slideshow": {
     "slide_type": "fragment"
    }
   },
   "outputs": [],
   "source": [
    "def create_model():\n",
    "    \"\"\"\n",
    "    采用 keras 搭建神经网络模型\n",
    "    :return: 神经网络模型\n",
    "    \"\"\"\n",
    "    # 选择模型选择序贯模型Sequential())\n",
    "    model = Sequential()\n",
    "    # 添加全连接层 512 个神经元\n",
    "    model.add(Dense(512, input_shape=(784,)))\n",
    "    # 添加激活层激活函数选择 relu \n",
    "    model.add(Activation('relu'))\n",
    "    # 添加全连接层 512 个神经元\n",
    "    model.add(Dense(512))\n",
    "    # 添加激活层激活函数选择 relu \n",
    "    model.add(Activation('relu'))\n",
    "    # 添加全连接层 10 个神经元\n",
    "    model.add(Dense(10))\n",
    "    # 添加激活层激活函数选择 softmax\n",
    "    model.add(Activation('softmax'))\n",
    "    return model\n",
    "\n",
    "# 实例化模型\n",
    "model = create_model()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "4. 训练和测试神经网络模型"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {
    "slideshow": {
     "slide_type": "fragment"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Epoch 1/5\n",
      "938/938 [==============================] - 42s 45ms/step - loss: 0.2597 - accuracy: 0.9200\n",
      "Epoch 2/5\n",
      "938/938 [==============================] - 41s 43ms/step - loss: 0.1255 - accuracy: 0.9614\n",
      "Epoch 3/5\n",
      "938/938 [==============================] - 42s 45ms/step - loss: 0.0952 - accuracy: 0.9702\n",
      "Epoch 4/5\n",
      "938/938 [==============================] - 41s 44ms/step - loss: 0.0805 - accuracy: 0.9748\n",
      "Epoch 5/5\n",
      "938/938 [==============================] - 41s 44ms/step - loss: 0.0691 - accuracy: 0.9777\n",
      "313/313 [==============================] - 1s 2ms/step - loss: 0.0867 - accuracy: 0.9732\n",
      "Test loss: 0.08665528893470764\n",
      "Accuracy: 0.9732000231742859\n"
     ]
    }
   ],
   "source": [
    "def fit_and_predict(model, model_path):\n",
    "    \"\"\"\n",
    "    训练模型、模型评估、保存模型\n",
    "    :param model: 搭建好的模型\n",
    "    :param model_path:保存模型路径\n",
    "    :return:\n",
    "    \"\"\"\n",
    "    # 编译模型\n",
    "    model.compile(optimizer='Adam',\n",
    "                  loss='categorical_crossentropy', \n",
    "                  metrics=['accuracy'])\n",
    "    # 模型训练\n",
    "    model.fit(X_train, y_train, epochs=5, batch_size=64)\n",
    "    # 保存模型\n",
    "    model.save(model_path)\n",
    "    # 模型评估获取测试集的损失值和准确率\n",
    "    loss, accuracy = model.evaluate(X_test, y_test)\n",
    "    # 打印结果\n",
    "    print('Test loss:', loss)\n",
    "    print(\"Accuracy:\", accuracy)\n",
    "    \n",
    "# 训练模型和评估模型\n",
    "fit_and_predict(model, model_path='./model.h5')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "skip"
    }
   },
   "source": [
    "<br>"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "那么神经网络模型是如何识别这一张张图片的呢以下我们使用通过下面几个小视频你会更好的理解神经网络"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "神经网络的整体模型"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "fragment"
    }
   },
   "source": [
    "<center><video src=\"http://files.momodel.cn/nn_media1.mp4\" controls=\"controls\" width=800px></center>"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "通过激活函数神经元将每一层的化学状态传递到下一层"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<center><video src=\"http://files.momodel.cn/nn_media2.mp4\" controls=\"controls\" width=800px></center>"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "skip"
    }
   },
   "source": [
    "<br>"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "对于MNIST的图像分类这里需要传递的信息就是图形信息"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "fragment"
    }
   },
   "source": [
    "<center><video src=\"http://files.momodel.cn/nn_media3.mp4\" controls=\"controls\" width=800px></center>"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "skip"
    }
   },
   "source": [
    "<br>"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "图像信息在神经网络中的传递"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "fragment"
    }
   },
   "source": [
    "<center><video src=\"http://files.momodel.cn/nn_media4.mp4\" controls=\"controls\" width=800px></center>"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "skip"
    }
   },
   "source": [
    "<br>"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "具体表述成函数的形式一个第二层的神经元的值就应该是这样获得的"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "fragment"
    }
   },
   "source": [
    "<center><video src=\"http://files.momodel.cn/nn_media5.mp4\" controls=\"controls\" width=800px></center>"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "skip"
    }
   },
   "source": [
    "<br>"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "全连接网络中的参数设置"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "fragment"
    }
   },
   "source": [
    "<center><video src=\"http://files.momodel.cn/nn_media6.mp4\" controls=\"controls\" width=800px></center>"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### 实践与体验\n",
    "#### 调节神经网络结构和参数\n",
    "\n",
    "1. 将两层隐藏层改为一层训练模型并在测试集上测试得出准确率。\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "slideshow": {
     "slide_type": "fragment"
    }
   },
   "outputs": [],
   "source": [
    "def create_model1():\n",
    "    \"\"\"\n",
    "    搭建神经网络模型 model1,比 model 少一层隐藏层\n",
    "    :return: 模型 model1\n",
    "    \"\"\"\n",
    "    # 选择模型选择序贯模型Sequential())\n",
    "    model = \n",
    "    # 添加全连接层 512 个神经元\n",
    "    model.add()\n",
    "    # 添加激活层激活函数选择 relu\n",
    "    model.add()\n",
    "    # 添加全连接层 10 个神经元\n",
    "    model.add()\n",
    "    # 添加激活层激活函数选择 softmax\n",
    "    model.add()\n",
    "    return model\n",
    "\n",
    "# 搭建神经网络\n",
    "model1 = create_model1()\n",
    "# 训练神经网络模型保存模型和评估模型\n",
    "fit_and_predict(model1, model_path='./model1.h5')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "2. 修改两层隐藏层神经元的数量然后训练模型得出准确率"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "slideshow": {
     "slide_type": "fragment"
    }
   },
   "outputs": [],
   "source": [
    "def create_model2():\n",
    "    \"\"\"\n",
    "    搭建神经网络模型 model2,隐藏层的神经元数目比 model 少一半\n",
    "    :return: 神经网络模型 model2\n",
    "    \"\"\"\n",
    "    # 选择模型选择序贯模型Sequential())\n",
    "    model = Sequential()\n",
    "    # 添加全连接层 256 个神经元\n",
    "    model.add()\n",
    "    # 添加激活层激活函数选择 relu\n",
    "    model.add()\n",
    "    # 添加全连接层 256 个神经元\n",
    "    model.add()\n",
    "    # 添加激活层激活函数选择 relu\n",
    "    model.add()\n",
    "    # 添加全连接层 10 个神经元\n",
    "    model.add()\n",
    "    # 添加激活层激活函数选择 softmax\n",
    "    model.add()\n",
    "    return model\n",
    "\n",
    "# 搭建神经网络模型\n",
    "model2 = create_model2()\n",
    "# 训练神经网络模型保存模型并评估模型\n",
    "fit_and_predict(model2,model_path='./model2.h5')\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "3. 输入一个手写数字比较三种模型输出结果的差异对其差异进行分析解释"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {
    "slideshow": {
     "slide_type": "fragment"
    }
   },
   "outputs": [],
   "source": [
    "import numpy as np\n",
    "np.set_printoptions(suppress=True)\n",
    "from tensorflow.keras.models import load_model\n",
    "\n",
    "# 加载模型\n",
    "model = load_model('./model.h5')\n",
    "model1 = load_model('./model1.h5')\n",
    "model2 = load_model('./model2.h5')  "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {
    "slideshow": {
     "slide_type": "fragment"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "原始模型\n",
      "其各类别预测概率:[0. 0. 0. 0. 0. 0. 0. 1. 0. 0.]预测值: 7真实值:7\n",
      "\n"
     ]
    }
   ],
   "source": [
    "# 预测结果\n",
    "predict_results = np.round(model.predict(X_test)[0],3)\n",
    "# predict_results1 = np.round(model1.predict(X_test)[0],3)\n",
    "# predict_results2 = np.round(model2.predict(X_test)[0],3)\n",
    "\n",
    "# 打印预测结果\n",
    "print('原始模型\\n其各类别预测概率:%s,预测值: %s,真实值:%s\\n'  % (predict_results,np.argmax(predict_results),np.argmax(y_test[0])))\n",
    "print('只有一个隐藏层的模型\\n其各类别各类别预测概率:%s,预测值: %s,真实值:%s\\n'  % (predict_results1,np.argmax(predict_results1),np.argmax(y_test[0])))\n",
    "print('隐藏神经元数量更改后的模型\\n其各类别预测概率:%s,预测值: %s,真实值:%s'  % (predict_results2,np.argmax(predict_results2),np.argmax(y_test[0])))"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.7.5"
  },
  "pycharm": {
   "stem_cell": {
    "cell_type": "raw",
    "metadata": {
     "collapsed": false
    },
    "source": []
   }
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}