master
/ handler.py

handler.py @fe35cc9 raw · history · blame

from PIL import Image
import requests
import base64
import torch, numpy as np
from torchvision import transforms
from torchvision.transforms.functional import InterpolationMode
from models.blip_vqa import blip_vqa


image_size = 480
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model_url = './ckpt/model_base_vqa_capfilt_large.pth'
model = blip_vqa(pretrained=model_url, image_size=image_size, vit='base')
model = model.to(device)

import time
def run_time(func):
    def inner(model, image, question):
        back = func(model, image, question)
        print("Runned time: {} s".format(round((time.time() - t)/10, 3)))
        return back
    t = time.time()
    return inner

def load_demo_image(img_url, image_size, device):
    if "http" in img_url:
        raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
    else:
        raw_image = Image.open(img_url).convert('RGB')
    
    transform = transforms.Compose([
        transforms.Resize((image_size,image_size),interpolation=InterpolationMode.BICUBIC),
        transforms.ToTensor(),
        transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))
        ]) 
    image = transform(raw_image).unsqueeze(0).to(device)   
    return image

@run_time
def inference(model, image, question = 'what is in the picture?'):
    model.eval()
    with torch.no_grad():
        answer = model(image, question, train=False, inference='generate') 
        return answer[0]


def handle(conf):
    base64_str = conf['Photo']  # value_type: str # description: some description
    question = conf['Question']
    image = load_demo_image(base64_str, image_size, device)
    res = inference(model, image, question)
    print('Answer :', res)
    # add your code
    return {'Answer': res}



# handle({'Photo': './img/demo.jpg', 'Question': 'What is in this image?'})