demo.ipynb @fe35cc9 — view markup · raw · history · blame
In [1]:
from PIL import Image
import requests
import torch, numpy as np
from torchvision import transforms
from torchvision.transforms.functional import InterpolationMode
from models.blip_vqa import blip_vqa
from keras.preprocessing import image
In [2]:
image_size = 480
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model_url = './ckpt/model_base_vqa_capfilt_large.pth'
model = blip_vqa(pretrained=model_url, image_size=image_size, vit='base')
model = model.to(device)
In [3]:
import time
def run_time(func):
def inner(model, image, question):
back = func(model, image, question)
print("Runned time: {} s".format(round((time.time() - t)/10, 3)))
return back
t = time.time()
return inner
In [4]:
def load_demo_image(img_url, image_size, device):
if "http" in img_url:
raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
else:
raw_image = Image.open(img_url).convert('RGB')
transform = transforms.Compose([
transforms.Resize((image_size,image_size),interpolation=InterpolationMode.BICUBIC),
transforms.ToTensor(),
transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))
])
image = transform(raw_image).unsqueeze(0).to(device)
return image
In [5]:
@run_time
def inference(model, image, question = 'what is in the picture?'):
model.eval()
with torch.no_grad():
answer = model(image, question, train=False, inference='generate')
return answer[0]
In [6]:
def handle(conf):
base64_str = conf['Photo']
question = conf['Question']
image = load_demo_image(base64_str, image_size, device)
res = inference(model, image, question)
print('Answer :', res)
# add your code
return {'Answer': res}
In [8]:
handle({'Photo': './img/demo.jpg', 'Question': 'What is in this image?'})
Out[8]:
In [ ]: