master
/ 02.03 回归分析(学生版).ipynb

02.03 回归分析(学生版).ipynb @7439c2a

4b0cb67
 
 
 
 
 
32f9dec
4b0cb67
 
 
 
 
 
 
 
 
32f9dec
4b0cb67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32f9dec
4b0cb67
 
 
 
 
 
 
 
 
 
 
 
18d0870
4b0cb67
18d0870
4b0cb67
18d0870
4b0cb67
 
 
 
 
 
18d0870
4b0cb67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18d0870
4b0cb67
 
 
 
 
 
 
 
 
18d0870
4b0cb67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18d0870
4b0cb67
 
 
 
 
 
 
 
 
 
 
 
 
18d0870
 
4b0cb67
18d0870
 
4b0cb67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32f9dec
4b0cb67
 
 
 
 
 
 
 
32f9dec
4b0cb67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32f9dec
4b0cb67
 
 
 
 
 
 
 
32f9dec
4b0cb67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# 2.3 回归分析\n",
    "\n",
    "**回归分析**:分析不同变量之间存在关系的研究。   \n",
    "**回归模型**:刻画不同变量之间关系的模型。"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 2.3.1 回归分析的基本概念\n",
    "\n",
    "**数据**:下表给出了莫纳罗亚山从 1970 年到 2005 年间每 5 年的二氧化碳浓度,单位是百万分比浓度(parts per million,简称ppm)\n",
    "\n",
    "<table>\n",
    "    <h4 align=\"center\">莫纳罗亚山从 1970 年到 2005 年间每 5 年的二氧化碳浓度</h4>\n",
    "<tbody>\n",
    "    <tr>\n",
    "        <th align=\"left\">**年份 $x$ ** </th>\n",
    "        <td align=\"center\">1970</td>\n",
    "        <td align=\"center\">1975</td>\n",
    "        <td align=\"center\">1980</td> \n",
    "        <td align=\"center\">1985</td>\n",
    "        <td align=\"center\">1990</td>\n",
    "        <td align=\"center\">1995</td>\n",
    "        <td align=\"center\">2000</td>\n",
    "        <td align=\"center\">2005</td>\n",
    "    </tr>\n",
    "    <tr>\n",
    "      <th align=\"left\">**$CO_2$(ppm) $y$**</th>\n",
    "        <td align=\"center\">325.68</td>\n",
    "        <td align=\"center\">331.15</td>\n",
    "        <td align=\"center\">338.69</td> \n",
    "        <td align=\"center\">345.90</td>\n",
    "        <td align=\"center\">354.19</td>\n",
    "        <td align=\"center\">360.88</td>\n",
    "        <td align=\"center\">369.48</td>\n",
    "        <td align=\"center\">379.67</td>\n",
    "    </tr>\n",
    "</tbody>\n",
    "</table>\n",
    "\n",
    "\n",
    "**目标**:分析时间年份和二氧化碳浓度之间的关联关系,由此预测2010年二氧化碳浓度。\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import numpy as np\n",
    "import matplotlib.pyplot as plt\n",
    "%matplotlib inline\n",
    "\n",
    "x = np.array([1970, 1975, 1980, 1985, 1990, 1995, 2000, 2005])\n",
    "y = np.array([325.68, 331.15, 338.69, 345.90, 354.19, 360.88, 369.48, 379.67])\n",
    "fig = plt.figure()\n",
    "plt.xlabel(\"Year\")\n",
    "plt.ylabel(\"Co2\")\n",
    "plt.scatter(x, y, c='r')\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "该地区二氧化碳浓度在逐年缓慢增加,因此我们使用简单的**线性模型**来刻画时间年份和二氧化碳浓度两者之间的关系,即 $二氧化碳浓度 = a × 时间 + b$。 \n",
    "\n",
    "设时间年份为 $x$,二氧化碳浓度为 $y$,即 $y = ax + b$ 。\n",
    "\n",
    "通过上述数据来确定模型中 $a$ 和 $b$ 的值,一旦求解出 $a$ 和 $b$ 的值,输入任意的时间年份即可估算出该年份对应的二氧化碳浓度值。\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 2.3.2 回归分析中参数计算\n",
    "\n",
    "最简单的线性回归是**一元线性回归模型**,只包含一个自变量 $x$ 和一个因变量 $y$,并且假定自变量和因变量之间存在 $y=ax+b$ 的线性关系。求解参数 $a$ 和 $b$,需要给定若干组 $(x,y)$ 数据,然后从这些数据出发来计算参数 $a$ 和 $b$。\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "在一元线性回归模型中,最关键的问题是如何计算参数 $a$ 和参数 $b$ 使误差最小化。\n",
    "\n",
    "最拟合直线  $y=ax+b$ 应该与这 8 组样本数据点距离都很近,最好的情况是这些样本数据点都在该直线上(不现实),让所有样本数据点离直线尽可能的近(被定义为预测数值和实际数值之间的差)。\n",
    "\n",
    "**预测值**:\n",
    "\n",
    "**真实值**:\n",
    "\n",
    "**残差**:\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "我们根据公式编写如下的方法来求解 $a$ 和 $b$。"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "def cal_a_b(x, y):\n",
    "    \"\"\"\n",
    "    计算 x 和 y 的线性系数\n",
    "    :param x: np array 格式的自变量\n",
    "    :param y: np array 格式的因变量\n",
    "    :return: 系数 a 和 b\n",
    "    \"\"\"\n",
    "    pass\n",
    "    return a, b\n",
    "a, b = cal_a_b(x, y)\n",
    "print(a, b)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "综上:得到的预测莫纳罗亚山地区二氧化碳浓度的一元线性回归模型为:。  \n",
    "我们可以据此绘制出拟合直线。"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# 构造 y = ax + b 直线\n",
    "x_predict = np.linspace(1965, 2010, 1000)\n",
    "y_predict = a * x_predict + b\n",
    "\n",
    "# 绘图\n",
    "fig = plt.figure()\n",
    "plt.xlabel(\"Year\")\n",
    "plt.ylabel(\"Co2\")\n",
    "plt.scatter(x, y, c='r')\n",
    "plt.plot(x_predict, y_predict, c='b')\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "然后我们可以对该地区1970年之前和2005年之后的二氧化碳浓度进行估算。"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# 例如,预测 2015 年的二氧化碳浓度\n",
    "a * 2015 + b"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "填写你的最终的预测结果在下表中:  \n",
    "\n",
    "<table>\n",
    "<tbody>\n",
    "    <tr>\n",
    "        <th align=\"left\">**年份 $x$ ** </th>\n",
    "        <td align=\"center\">1960</td>\n",
    "        <td align=\"center\">1965</td>\n",
    "        <td align=\"center\">1970-2005</td> \n",
    "        <td align=\"center\">2010</td>\n",
    "        <td align=\"center\">2015</td>\n",
    "    </tr>\n",
    "    <tr>\n",
    "      <th align=\"left\">**$CO_2$(ppm) $y$**</th>\n",
    "        <td align=\"center\">  </td>\n",
    "        <td align=\"center\"> </td>\n",
    "        <td align=\"center\">已有数据</td> \n",
    "        <td align=\"center\"> </td>\n",
    "        <td align=\"center\"> </td>\n",
    "    </tr>\n",
    "</tbody>\n",
    "</table>"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 探究莫纳罗亚山地区二氧化碳与温度之间的关系\n",
    "\n",
    "该地区 1970 年到 2005 年间每 5 年的二氧化碳浓度以及全球温度(相对于 1961 - 1990 年经过平滑处理的平均温度增长量)\n",
    "\n",
    "<table>\n",
    "<tbody>\n",
    "    <tr>\n",
    "        <th align=\"left\">$CO_2$(ppm) $x$</th>\n",
    "        <td align=\"center\">325.68</td>\n",
    "        <td align=\"center\">331.15</td>\n",
    "        <td align=\"center\">338.69</td> \n",
    "        <td align=\"center\">345.90</td>\n",
    "        <td align=\"center\">354.19</td>\n",
    "        <td align=\"center\">360.88</td>\n",
    "        <td align=\"center\">369.48</td>\n",
    "        <td align=\"center\">379.67</td>\n",
    "    </tr>\n",
    "    <tr>\n",
    "      <th align=\"left\">温度 $y$ </th>\n",
    "        <td align=\"center\">-0.108</td>\n",
    "        <td align=\"center\">-0.082</td>\n",
    "        <td align=\"center\">0.015</td>\n",
    "        <td align=\"center\">0.080</td>\n",
    "        <td align=\"center\">0.149</td>\n",
    "        <td align=\"center\">0.240</td>\n",
    "        <td align=\"center\">0.370</td>\n",
    "        <td align=\"center\">0.420</td>\n",
    "\n",
    "    </tr>\n",
    "</tbody>\n",
    "</table>"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "我们可以使用上面同样的方法来求解得到参数 $a$ 和 $b$。并绘制出拟合直线。"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# 数据\n",
    "x = np.array([325.68, 331.15, 338.69, 345.90, 354.19, 360.88, 369.48, 379.67])\n",
    "y = np.array([-0.108, -0.082, 0.015, 0.080, 0.149, 0.24, 0.370, 0.420])\n",
    "\n",
    "# 计算参数 a 和 b\n",
    "a, b = cal_a_b(x, y)\n",
    "\n",
    "# 构造 y = ax + b 直线\n",
    "x_predict = np.linspace(325, 380, 1000)\n",
    "y_predict = a * x_predict + b\n",
    "\n",
    "# 绘图\n",
    "fig = plt.figure()\n",
    "plt.xlabel(\"Co2\")\n",
    "plt.ylabel(\"Temperature\")\n",
    "plt.scatter(x, y, c='r')\n",
    "plt.plot(x_predict, y_predict, c='b')\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### 思考与练习"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "1. 摄氏温度(℃)和华氏温度(℉)是两种计量温度的标准,下表给出了两种温度之间的若干关系,如摄氏温度 0℃ 等于华氏温度 32℉。\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<table>\n",
    "    <h4 align=\"center\">不同温度下测得摄氏/华氏温度表</h4>\n",
    "<tbody>\n",
    "    <tr>\n",
    "        <th align=\"left\">摄氏温度(℃) </th>\n",
    "        <td align=\"center\">0</td>\n",
    "        <td align=\"center\">10</td>\n",
    "        <td align=\"center\">15</td> \n",
    "        <td align=\"center\">20</td>\n",
    "        <td align=\"center\">25</td>\n",
    "        <td align=\"center\">30</td>\n",
    "    </tr>\n",
    "    <tr>\n",
    "      <th align=\"left\">华氏温度(℉)</th>\n",
    "        <td align=\"center\">32</td>\n",
    "        <td align=\"center\">50</td>\n",
    "        <td align=\"center\">59</td> \n",
    "        <td align=\"center\">68</td>\n",
    "        <td align=\"center\">77</td>\n",
    "        <td align=\"center\">86</td>\n",
    "    </tr>\n",
    "</tbody>\n",
    "</table>"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "试判断摄氏温度和华氏温度之间是否符合线性关系。如符合,请通过线性回归分析计算出摄氏温度和华氏温度之间的线性回归方程。"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "首先:我们观察一下摄氏华氏温度的散点图"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# 数据\n",
    "x = np.array([0, 10, 15, 20, 25, 30])\n",
    "y = np.array([32, 50, 59, 68, 77, 86])\n",
    "fig = plt.figure()\n",
    "plt.xlabel(\"摄氏温度\")\n",
    "plt.ylabel(\"华氏温度\")\n",
    "plt.scatter(x, y, c='r')\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "**问题 1**:观察上图,摄氏温度和华氏温度是否符合线性关系? 如果是,使用我们上面写好求解参数的方法来快速求解系数。"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# todo 编写代码求解系数\n",
    "a, b = \n",
    "print('参数 a 的值为:{:g},参数 b 的值为:{:g}'.format(a, b))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# 构造 y = ax + b 直线\n",
    "x_predict = np.linspace(0, 30, 1000)\n",
    "y_predict = a * x_predict + b\n",
    "\n",
    "# 绘图\n",
    "fig = plt.figure()\n",
    "plt.xlabel(\"摄氏温度\")\n",
    "plt.ylabel(\"华氏温度\")\n",
    "plt.scatter(x, y, c='r')\n",
    "plt.plot(x_predict, y_predict, c='b')\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "2. 摩尔定律是由英特尔创始人之一的戈登·摩尔提出,其基本内容为:当价格不变时,集成电路上可容纳的元器件的数目,大约每隔 18-24 个月变会增加一倍,性能也将提升一倍。下表记录了 1971-2004 年英特尔微处理器晶体管数量的增长。需要注意的是,随着单位面积上晶体管体积越来越小,摩尔定律所描述的晶体管增长在不久的将来会面临发展的极限。"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "|微处理器|推出年份($x$)|晶体管数量($y$)|$z$=log<sub>2</sub>$y$|\n",
    "|--|--|--|--|\n",
    "|4004|1971|2300|11.17|\n",
    "|8008|1972|2500|11.29|\n",
    "|8080|1974|4500|12.14|\n",
    "|8086|1978|29000|14.82|\n",
    "|Intel266|1982|134000|17.03|\n",
    "|Intel386~processor|1985|275000|18.07|\n",
    "|Intel486~processor|1989|1200000|20.19|\n",
    "|Intel Pentium processor|1993|3100000|21.56|\n",
    "|Intel Pentium Ⅱ processor|1997|7500000|22.84|\n",
    "|Intel Pentium Ⅲ processor|1999|9500000|23.18|\n",
    "|Intel Pentium 4 processor|2000|42000000|25.32|\n",
    "|Intel Itanium processor|2001|25000000|24.58|\n",
    "|Intel Itanium 2 processor|2003|220000000|27.72|\n",
    "|Intel Itanium 2 processor(9MB cache)|2004|592000000|29.14|"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "摩尔定律刻画了晶体管数量与时间之间存在指数关系,可用非线性回归拟合来表示这种关系,非线性回归拟合超出了本教程的内容范围。不过我们可以对晶体管数量取以 2 为底的对数(记为 $z$ ),通过判断 $z$ 与时间 $x$ 之间是否存在线性关系,来验证摩尔定律。如果上述线性关系存在,使用线性回归方法计算之间的最佳拟合直线。"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# 年份\n",
    "x = np.array(\n",
    "    [1971, 1972, 1974, 1978, 1982, 1985, 1989, 1993, 1997, 1999, 2000, 2001,\n",
    "     2003, 2004])\n",
    "# 晶体管取以 2 为底的对数\n",
    "z = np.array(\n",
    "    [11.17, 11.29, 12.14, 14.82, 17.03, 18.07, 20.19, 21.56, 22.84, 23.18,\n",
    "     25.32, 24.58, 27.72, 29.14])"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "我们绘图观察 $x$ 和 $z$ 之间的关系"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "fig = plt.figure()\n",
    "plt.xlabel(\"年份\")\n",
    "plt.ylabel(\"晶体管取以 2 为底的对数\")\n",
    "plt.scatter(x, z, c='r')\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "**问题 1**:观察上图,𝑧 与时间 𝑥 之间是否存在线性关系?如果是,我们用上面写好的方法来求解系数。"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# todo 编写代码求解系数\n",
    "a, b = \n",
    "print('参数 a 的值为:{:g},参数 b 的值为:{:g}'.format(a, b))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# 构造 y = ax + b 直线\n",
    "x_predict = np.linspace(1970, 2005, 1000)\n",
    "z_predict = a * x_predict + b\n",
    "\n",
    "# 绘图\n",
    "fig = plt.figure()\n",
    "plt.xlabel(\"年份\")\n",
    "plt.ylabel(\"晶体管取以 2 为底的对数\")\n",
    "plt.scatter(x, z, c='r')\n",
    "plt.plot(x_predict, z_predict, c='b')\n",
    "plt.show()"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.5.2"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}