import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()
tf.reset_default_graph()
import numpy as np
from PIL import Image
import model
import util
import os
import sys
model_PATH='/home/jovyan/work/src/output/models/model2000.ckpt'
def load_demo_image(in_PATH):
img = np.array(Image.open(in_PATH).convert('RGB'))[np.newaxis] / 255.0
img_p = util.preprocess_images_outpainting(img)
return img_p
def inference(model_PATH, img_p):
G_Z = tf.placeholder(tf.float32, shape=[None, IMAGE_SZ, IMAGE_SZ, 4], name='G_Z')
G_sample = model.generator(G_Z)
saver = tf.train.Saver()
with tf.Session() as sess:
saver.restore(sess, model_PATH)
output, = sess.run([G_sample], feed_dict={G_Z: img_p})
img_norm = (output[0] * 255.0).astype(np.uint8)
img = Image.fromarray(img_norm, 'RGB')
#util.save_image(output[0], out_PATH)
return img
def handle(conf):
"""
该方法是部署之后,其他人调用你的服务时候的处理方法。
请按规范填写参数结构,这样我们就能替你自动生成配置文件,方便其他人的调用。
范例:
params['key'] = value # value_type: str # description: some description
value_type 可以选择:img, video, audio, str, int, float, [int], [str], [float]
参数请放到params字典中,我们会自动解析该变量。
"""
base64_str = conf['Photo']
image = load_demo_image(base64_str, image_size, device)
res = inference(model, image)
# add your code
return {'Output': res}