master
/ Untitled.ipynb

Untitled.ipynb @master

cf9f12d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "import networkx as nx"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {},
   "outputs": [],
   "source": [
    "def bfs_search(G, max_depth, start_node, target_node):\n",
    "    # 待访问的路径\n",
    "    to_search = [(start_node, 0)]\n",
    "    # 存储所有的历史路径,及此路径的距离\n",
    "    bfs_path = []\n",
    "    # 正确的路径列表,及此路径的距离\n",
    "    bfs_correct_path = []\n",
    "    # 当还有待访问的路径时\n",
    "    while to_search:\n",
    "        # 从待访问的路径中取第一个待访问路径及其路径长度,例如 AC\n",
    "        this_path, this_path_dis = to_search.pop(0)\n",
    "        # 如果待访问的路径达到最大搜索深度,跳出循环\n",
    "        if len(this_path) > max_depth :\n",
    "            break\n",
    "        # 把刚取出的路径存入历史路径中\n",
    "        bfs_path.append((this_path, this_path_dis))\n",
    "        # 如果路径的最后一个节点是目标节点,路径 AC 的最后一个节点是 C\n",
    "        if this_path[-1] == target_node:\n",
    "            # 其为一条正确的路径,将存入正确的路径列表中,\n",
    "            # 并不再继续往其子节点进行探索\n",
    "            bfs_correct_path.append((this_path, this_path_dis))\n",
    "            continue\n",
    "        # 找到路径最后一个节点的相邻节点\n",
    "        for ne in sorted(G[this_path[-1]]):\n",
    "            # 如果相邻节点不在路径中,即不存在回路\n",
    "            if ne not in this_path:\n",
    "                # 则加入到待访问的路径中\n",
    "                to_search.append((this_path + ne,\n",
    "                                  this_path_dis + G[this_path[-1]][ne][\n",
    "                                      'weight']))\n",
    "    return bfs_path, bfs_correct_path"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {},
   "outputs": [],
   "source": [
    "# 定义节点列表\n",
    "node_list = ['A', 'B', 'C', 'D', 'E', 'F', 'G']\n",
    "\n",
    "# 定义边及权重列表\n",
    "weighted_edges_list = [('A', 'B', 8), ('A', 'C', 20),\n",
    "                       ('B', 'F', 40), ('B', 'E', 30),\n",
    "                       ('B', 'D', 20), ('C', 'D', 10), \n",
    "                       ('D', 'G', 10), ('D', 'E', 10),\n",
    "                       ('E', 'F', 30), ('F', 'G', 30)]\n",
    "\n",
    "# 定义绘图中各个节点的坐标\n",
    "nodes_pos = {\"A\": (1, 1), \"B\": (3, 3), \"C\": (5, 0), \"D\": (9, 2),\n",
    "             \"E\": (7, 4), \"F\": (6,6),\"G\": (11,5)}\n",
    "\n",
    "G = nx.Graph()\n",
    "G.add_nodes_from(node_list)\n",
    "G.add_weighted_edges_from(weighted_edges_list)\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {},
   "outputs": [],
   "source": [
    "bfs_path, bfs_correct_path = bfs_search(G, 3, 'A', 'G')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "metadata": {},
   "outputs": [],
   "source": [
    "paths = [e[0] for e in bfs_path]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 23,
   "metadata": {},
   "outputs": [],
   "source": [
    "import collections\n",
    "def get_search_tree_node_position(paths):\n",
    "    \"\"\"得到绘图时各个节点的坐标\n",
    "    \"\"\"\n",
    "    max_depth = 3 \n",
    "    # 得到每条路径的子路径\n",
    "    path_childern = {}\n",
    "    for path in paths:\n",
    "        father = path[:-1]\n",
    "        if father in paths:\n",
    "            if father in path_childern:\n",
    "                path_childern[father].append(path)\n",
    "            else:\n",
    "                path_childern[father] = [path]\n",
    "    # 对每条子路径排序\n",
    "    o_path_childern = collections.OrderedDict(\n",
    "        sorted(path_childern.items()))\n",
    "    # 计算每个树图中每个节点的位置\n",
    "    tree_node_position = {paths[0][0]: (1, 0, 2)}\n",
    "    for path, sub_paths in o_path_childern.items():\n",
    "        y_pos = -1.0 / max_depth * len(path)\n",
    "        dx = tree_node_position[path][2] / len(sub_paths)\n",
    "        sub_paths.sort()\n",
    "        for index, e_s in enumerate(sub_paths):\n",
    "            x_pos = tree_node_position[path][0] - tree_node_position[path][\n",
    "                2] / 2 + dx / 2 + dx * index\n",
    "            tree_node_position[e_s] = (x_pos, y_pos, dx)\n",
    "    print(tree_node_position)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 24,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "{'A': (1, 0, 2), 'ACD': (1.5, -0.6666666666666666, 1.0), 'AC': (1.5, -0.3333333333333333, 1.0), 'ABD': (0.16666666666666666, -0.6666666666666666, 0.3333333333333333), 'AB': (0.5, -0.3333333333333333, 1.0), 'ABF': (0.8333333333333333, -0.6666666666666666, 0.3333333333333333), 'ABE': (0.5, -0.6666666666666666, 0.3333333333333333)}\n"
     ]
    }
   ],
   "source": [
    "get_search_tree_node_position(paths)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import matplotlib.pyplot as plt\n",
    "import collections\n",
    "from IPython import display\n",
    "import networkx as nx\n",
    "import numpy as np\n",
    "import time\n",
    "\n",
    "\n",
    "class SearchGraph():\n",
    "    def __init__(self,\n",
    "                 node_list, \n",
    "                 weighted_edges_list, \n",
    "                 start_node,\n",
    "                 target_node,\n",
    "                 max_depth=1000,\n",
    "                 nodes_pos=None,\n",
    "                 help_info=None,):\n",
    "        # 图中的节点\n",
    "        self.node_list = node_list\n",
    "        self.weighted_edges_list = weighted_edges_list\n",
    "        self.start_node = start_node\n",
    "        self.target_node = target_node\n",
    "        self.nodes_pos = nodes_pos\n",
    "        self.max_depth = min(max_depth, len(node_list))\n",
    "        self.temp_best_path = None\n",
    "        \n",
    "        self.weighted_edges_dic = {frozenset([e[0],e[1]]):e[2] for e in weighted_edges_list}\n",
    "        self.help_info = help_info\n",
    "        self.path_score={self.start_node:0}\n",
    "        \n",
    "        self.animation_type = 'dfs'\n",
    "        \n",
    "        self.basic_node_color = '#6CB6FF'\n",
    "        self.start_node_color = 'y'\n",
    "        self.target_node_color = 'r'\n",
    "        self.visited_node_color = 'g'\n",
    "        \n",
    "        self.basic_edge_color = 'b'\n",
    "        self.visited_edge_color = 'g'\n",
    "        \n",
    "        self.success_color = 'r'\n",
    "        \n",
    "        self.correct_paths={}\n",
    "        self.show_correct_path = []\n",
    "        self.build_graph()\n",
    "        self.get_search_tree_node_position()\n",
    "        self.bfs_search()\n",
    "        \n",
    "        \n",
    "\n",
    "    def build_graph(self):\n",
    "        self.G = nx.Graph()\n",
    "        self.G.add_nodes_from(self.node_list)\n",
    "        self.G.add_weighted_edges_from(self.weighted_edges_list)\n",
    "        \n",
    "    def get_search_tree_node_position(self):\n",
    "        \"\"\"得到绘图的点的坐标\n",
    "        \"\"\"\n",
    "        self.dfs_search()\n",
    "        # 得到 dfs 的搜索路径图\n",
    "        paths = self.dfs_path\n",
    "        # 得到每条路径的子路径\n",
    "        path_childern = {}\n",
    "        for path in paths:\n",
    "            father = path[:-1]\n",
    "            if father in paths:\n",
    "                if father in path_childern:\n",
    "                    path_childern[father].append(path)\n",
    "                else:\n",
    "                    path_childern[father] = [path]\n",
    "        # 对每条子路径排序\n",
    "        o_path_childern = collections.OrderedDict(sorted(path_childern.items()))\n",
    "        # 计算每个树图中每个节点的位置\n",
    "        tree_node_position = {self.start_node:(1, 0, 2)}\n",
    "        for path, sub_paths in o_path_childern.items():\n",
    "            y_pos = -1.0/self.max_depth * len(path)\n",
    "            dx = tree_node_position[path][2]/len(sub_paths) \n",
    "            sub_paths.sort()\n",
    "            for index, e_s in enumerate(sub_paths):\n",
    "                x_pos = tree_node_position[path][0] - tree_node_position[path][2]/2 + dx/2 + dx*index\n",
    "                tree_node_position[e_s]=(x_pos,y_pos, dx)\n",
    "        self.tree_node_position = tree_node_position\n",
    "        \n",
    "    def show_edge_labels(self, ax, pos1, pos2, label):\n",
    "        (x1, y1) = pos1\n",
    "        (x2, y2) = pos2\n",
    "        (x, y) = (x1*0.5 + x2*0.5, y1*0.5 + y2*0.5)\n",
    "\n",
    "        angle = np.arctan2(y2 - y1, x2 - x1) / (2.0 * np.pi) * 360\n",
    "        if angle > 90:\n",
    "            angle -= 180\n",
    "        if angle < - 90:\n",
    "            angle += 180\n",
    "        xy = np.array((x, y))\n",
    "        trans_angle = ax.transData.transform_angles(np.array((angle,)),\n",
    "                                                    xy.reshape((1, 2)))[0]\n",
    "        bbox = dict(boxstyle='round',\n",
    "                    ec=(1.0, 1.0, 1.0),\n",
    "                    fc=(1.0, 1.0, 1.0),\n",
    "                    )\n",
    "        label = str(label) \n",
    "        ax.text(x, y,\n",
    "                    label,\n",
    "                    size=16,\n",
    "                    color='k',\n",
    "                    alpha=1,\n",
    "                    horizontalalignment='center',\n",
    "                    verticalalignment='center',\n",
    "                    rotation=trans_angle,\n",
    "                    transform=ax.transData,\n",
    "                    bbox=bbox,\n",
    "                    zorder=1,\n",
    "                    clip_on=True,\n",
    "                    )\n",
    "        \n",
    "    def show_search_tree(self, \n",
    "                         this_path=None, \n",
    "                         show_success_color=False,\n",
    "                         best_path=None\n",
    "                        ):\n",
    "        \"\"\"展示搜索树\n",
    "        \"\"\"\n",
    "        # 画出树图        \n",
    "        fig, ax = plt.subplots()\n",
    "        fig.set_figwidth(15)\n",
    "        fig.set_figheight(self.max_depth*1.5)\n",
    "        plt.axis('off')\n",
    "        \n",
    "        for path, pos in self.tree_node_position.items():\n",
    "            if path[-1] == self.start_node:\n",
    "                node_color = self.start_node_color\n",
    "                edge_color = self.basic_edge_color\n",
    "            elif this_path and path in this_path:\n",
    "                if show_success_color:\n",
    "                    node_color = self.success_color\n",
    "                    edge_color = self.success_color\n",
    "                else:\n",
    "                    node_color = self.visited_node_color\n",
    "                    edge_color = self.visited_edge_color\n",
    "            elif path[-1] == self.target_node:\n",
    "                node_color = self.target_node_color\n",
    "                edge_color = self.basic_edge_color\n",
    "            else:\n",
    "                node_color = self.basic_node_color\n",
    "                edge_color = self.basic_edge_color\n",
    "            ax.scatter(pos[0], pos[1], c=node_color, s=1000,zorder=1)\n",
    "            plt.annotate(\n",
    "                path[-1],\n",
    "                xy=(pos[0], pos[1]),\n",
    "                xytext=(0, 0),\n",
    "                textcoords='offset points',\n",
    "                ha='center',\n",
    "                va='center',\n",
    "                size=15,)\n",
    "            if len(path)>1:\n",
    "                plt.plot([self.tree_node_position[path[:-1]][0],pos[0]], \n",
    "                         [self.tree_node_position[path[:-1]][1],pos[1]], \n",
    "                         color=edge_color,\n",
    "                         zorder=0)\n",
    "                if len(path)>1:\n",
    "                    label = self.weighted_edges_dic[frozenset([path[-2],path[-1]])]\n",
    "                    if self.animation_type in ['greedy','a_star']:\n",
    "                            label = self.help_info_weight*self.help_info[path[-1]] + self.origin_info_weight*label\n",
    "                    self.show_edge_labels(ax, self.tree_node_position[path[:-1]][0:2], pos[0:2], label)\n",
    "        display.clear_output(wait=True)\n",
    "        \n",
    "        show_res_text = \"\"\n",
    "        for e_c in self.show_correct_path:\n",
    "            show_res_text += '找到一条路径: %-7s' % e_c + '。距离为:' +str(self.correct_paths[e_c]) + '\\n'\n",
    "        plt.text(0, -1.1, show_res_text, fontsize=18,horizontalalignment='left', verticalalignment='top',)\n",
    "        \n",
    "        if best_path:\n",
    "            top_text = '最终最短路径为: %-7s' % this_path + '。距离为:' +str(self.correct_paths[this_path]) + '\\n'\n",
    "        elif this_path and  self.animation_type in ['dfs','bfs']:\n",
    "            top_text = '当前路径: %-7s' % this_path + '。距离为:' +str(self.path_score[this_path]) + '\\n' \n",
    "            if self.temp_best_path:\n",
    "                top_text += '当前最短路径为: %-7s' % self.temp_best_path + '。距离为:' +str(self.correct_paths[self.temp_best_path]) + '\\n'\n",
    "        else:\n",
    "            top_text = ''\n",
    "\n",
    "        plt.text(0, 0, \n",
    "                 top_text, \n",
    "                 fontsize=18,\n",
    "                 horizontalalignment='left', \n",
    "                 verticalalignment='top',)\n",
    "        \n",
    "        if self.animation_type in ['greedy','a_star']:\n",
    "            show_greedy_text = self.generate_greedy_help_text(this_path)\n",
    "            plt.text(0, 0, show_greedy_text, fontsize=18, horizontalalignment='left', verticalalignment='top',)\n",
    "        plt.show()\n",
    "        \n",
    "    def animation_search_tree(self,search_method='dfs', help_info_weight=1, origin_info_weight=1):\n",
    "        \"\"\"动画展示搜索过程\n",
    "        \"\"\"\n",
    "        self.animation_type = search_method\n",
    "        self.show_correct_path = []\n",
    "        self.temp_best_path = None\n",
    "        if search_method == 'bfs':\n",
    "            paths = self.bfs_path\n",
    "        elif search_method == 'dfs':\n",
    "            paths = self.dfs_path\n",
    "        elif search_method == 'greedy':\n",
    "            self.greedy_search()\n",
    "            paths = self.greedy_search_path\n",
    "        elif search_method == 'a_star':\n",
    "            self.a_star_search(help_info_weight=help_info_weight, origin_info_weight=origin_info_weight)\n",
    "            paths = self.greedy_search_path\n",
    "        else:\n",
    "            paths = []\n",
    "        for e_path in paths:\n",
    "            self.show_search_tree(e_path)\n",
    "            if e_path in self.correct_paths:\n",
    "                if not self.temp_best_path:\n",
    "                    self.temp_best_path = e_path\n",
    "                elif self.path_score[e_path] < self.path_score[self.temp_best_path]:\n",
    "                    self.temp_best_path = e_path\n",
    "                self.show_correct_path.append(e_path)\n",
    "                self.show_search_tree(e_path, True)\n",
    "            if search_method in ['greedy', 'a_star']:\n",
    "                time.sleep(5)\n",
    "        if search_method in ['bfs', 'dfs']:\n",
    "            if self.correct_paths:\n",
    "                best_path = min(self.correct_paths, key=self.correct_paths.get)\n",
    "                self.show_search_tree(best_path, True, True)\n",
    "    \n",
    "    def animation_graph(self, search_method='bfs', help_info_weight=1, origin_info_weight=1):\n",
    "        \n",
    "        \"\"\"\n",
    "        \"\"\"\n",
    "        self.animation_type = search_method\n",
    "        self.show_correct_path = []\n",
    "        if search_method == 'bfs':\n",
    "            paths = self.bfs_path\n",
    "        elif search_method == 'dfs':\n",
    "            paths = self.dfs_path\n",
    "        elif search_method == 'greedy':\n",
    "            self.greedy_search()\n",
    "            paths = self.greedy_search_path\n",
    "        elif search_method == 'a_star':\n",
    "            self.a_star_search(help_info_weight=help_info_weight, origin_info_weight=origin_info_weight)\n",
    "            paths = self.greedy_search_path\n",
    "        else:\n",
    "            paths = []\n",
    "        for e_path in paths:\n",
    "            self.show_graph(e_path)\n",
    "            if e_path in self.correct_paths:\n",
    "                self.show_correct_path.append(e_path)\n",
    "                self.show_graph(e_path, True)\n",
    "            time.sleep(5)\n",
    "        if search_method in ['bfs', 'dfs']:\n",
    "            best_path = min(self.correct_paths, key=self.correct_paths.get)\n",
    "            self.show_graph(best_path, True, True)\n",
    "    \n",
    "    def show_graph(self, this_path='', \n",
    "                         show_success_color=False,\n",
    "                         best_path=None):\n",
    "        \"\"\"\n",
    "        绘制图\n",
    "        :return:\n",
    "        \"\"\"\n",
    "        fig, ax = plt.subplots()\n",
    "        fig.set_figwidth(6)\n",
    "        fig.set_figheight(8)\n",
    "        plt.axis('off')\n",
    "\n",
    "        # 绘制节点与边颜色\n",
    "        visited_edges = []\n",
    "        if not this_path:\n",
    "            this_path = self.start_node\n",
    "        path_node_list = list(this_path)\n",
    "        for i in range(1,len(path_node_list)):\n",
    "            visited_edges.append(frozenset([path_node_list[i],path_node_list[i-1]]))\n",
    "            \n",
    "        # 节点与标识\n",
    "        nlabels = dict(zip(self.node_list, self.node_list))\n",
    "        edge_labels = dict([((u, v,), d['weight']) for u, v, d in self.G.edges(data=True)])\n",
    "        \n",
    "        # 节点颜色变化\n",
    "        val_map = {self.target_node: self.target_node_color}\n",
    "        if path_node_list:\n",
    "            for i in path_node_list:\n",
    "                if show_success_color:\n",
    "                    val_map[i] = self.success_color\n",
    "                else:\n",
    "                    val_map[i] = self.visited_node_color\n",
    "        val_map[self.start_node] = self.start_node_color \n",
    "        values = [val_map.get(node, self.basic_node_color) for node in self.G.nodes()]\n",
    "\n",
    "        # 处理边的颜色\n",
    "        edge_colors = []\n",
    "        for edge in self.G.edges():\n",
    "            # 如果边在result_red_edges,分2种情况:\n",
    "            # 如果this_path[0]/this_path[-1] 对应起始点和终点,颜色为绿色,否则颜色为红色\n",
    "            # 如果边不在result_red_edges,则初始化边的颜色为黑色\n",
    "            if frozenset(edge) in visited_edges:\n",
    "                if show_success_color:\n",
    "                    edge_colors.append(self.success_color)\n",
    "                else:\n",
    "                    edge_colors.append(self.visited_edge_color)\n",
    "            else:\n",
    "                edge_colors.append(self.basic_edge_color)\n",
    "\n",
    "        # 绘制节点及其标签\n",
    "        nx.draw_networkx_nodes(self.G, self.nodes_pos, node_size=800, node_color=values, width=6.0)\n",
    "        nx.draw_networkx_labels(self.G, self.nodes_pos, nlabels, font_size=20)\n",
    "        # 绘制边及其标签\n",
    "        nx.draw_networkx_edges(self.G, self.nodes_pos, edge_color=edge_colors, width=2.0, alpha=1.0)\n",
    "        nx.draw_networkx_edge_labels(self.G, self.nodes_pos, edge_labels=edge_labels, font_size=18)\n",
    "\n",
    "        display.clear_output(wait=True)\n",
    "        # show_text = \"\"\n",
    "        # for e_c in self.show_correct_path:\n",
    "        #     show_text += '找到一条路径: %-7s' % e_c + '。距离为:' +str(self.correct_paths[e_c]) + '\\n'\n",
    "        # plt.text(0, -2.6, show_text, fontsize=18, horizontalalignment='left', verticalalignment='top', )\n",
    "        \n",
    "#         if best_path:\n",
    "#             top_text = '最佳路径为: %-7s' % this_path + '。 距离为:' +str(self.correct_paths[this_path]) + '\\n'\n",
    "#         elif this_path and  self.animation_type in ['dfs','bfs']:\n",
    "#             top_text = '当前路径: %-7s' % this_path + '。 距离为:' +str(self.cal_dis(this_path)) + '\\n'\n",
    "#         else:\n",
    "#             top_text = ''\n",
    "#         plt.text(0, 0, \n",
    "#                  top_text, \n",
    "#                  fontsize=18,\n",
    "#                  horizontalalignment='left', \n",
    "#                  verticalalignment='top',)\n",
    "        plt.show()\n",
    "        \n",
    "    def _dfs_helper(self, G, node,  father, target_node,level, res, path):\n",
    "        path+=str(node)\n",
    "        if len(path)>1:\n",
    "            self.path_score[path] = self.path_score[path[:-1]] + self.weighted_edges_dic[frozenset([path[-2],path[-1]])]\n",
    "        res.append(path)\n",
    "        # 找到目标,停止搜索\n",
    "        if node==target_node:\n",
    "            return\n",
    "        if level< self.max_depth:\n",
    "            for neighbor in sorted(G[node]):\n",
    "                if str(neighbor) not in path:\n",
    "                    self._dfs_helper(G, neighbor,  node, target_node, level+1, res, path)\n",
    "                    \n",
    "    def dfs_search(self):\n",
    "        dfs_path=[]\n",
    "        this_path=''\n",
    "        if self.start_node:\n",
    "            self._dfs_helper(self.G, self.start_node, None, self.target_node, 0, dfs_path, this_path)\n",
    "        self.dfs_path = dfs_path\n",
    "        for p in dfs_path:\n",
    "            if p[-1]==self.target_node and p not in self.correct_paths:\n",
    "                self.correct_paths[p] = self.cal_dis(p) \n",
    "        \n",
    "    def bfs_search(self):\n",
    "        to_search=[self.start_node]\n",
    "        bfs_path = []\n",
    "        bfs_correct_path = []\n",
    "        depth = 0\n",
    "        while to_search:\n",
    "            this_search = to_search.pop(0)\n",
    "            if len(this_search)>self.max_depth+1 :\n",
    "                break\n",
    "            bfs_path.append(this_search)\n",
    "            if this_search[-1]==self.target_node:\n",
    "                bfs_correct_path.append(this_search)\n",
    "                continue\n",
    "            for ne in sorted(self.G[this_search[-1]]):\n",
    "                if ne not in this_search:\n",
    "                    to_search.append(this_search+ne)\n",
    "        self.bfs_path = bfs_path\n",
    "        for p in bfs_path:\n",
    "            if p[-1]==self.target_node and p not in self.correct_paths:\n",
    "                self.correct_paths[p] = self.cal_dis(p)\n",
    "                \n",
    "    def greedy_search(self, help_info_weight=1, origin_info_weight=0):\n",
    "        self.help_info_weight = help_info_weight\n",
    "        self.origin_info_weight = origin_info_weight\n",
    "        search_path = self.start_node\n",
    "        # 存储每一步的可选项及其分数,用来在动态演示时显示出来\n",
    "        search_scores = {}\n",
    "        while len(search_path) <= self.max_depth:\n",
    "            this_node = search_path[-1]\n",
    "            neighbour_nodes = [e_n for e_n in sorted(self.G[this_node]) if e_n not in search_path]\n",
    "            if len(neighbour_nodes) == 0:\n",
    "                search_scores[search_path]={}\n",
    "                break\n",
    "            if self.help_info:\n",
    "                scores = {e_n:help_info_weight*self.help_info[e_n]+origin_info_weight*self.weighted_edges_dic[frozenset([this_node,e_n])] for e_n in neighbour_nodes }\n",
    "            else:\n",
    "                scores = {e_n:self.weighted_edges_dic[frozenset([this_node,e_n])]\n",
    "                                                             for e_n in neighbour_nodes }\n",
    "            search_scores[search_path]=scores\n",
    "            nearest_node = min(scores, key=scores.get)\n",
    "            search_path += nearest_node\n",
    "            if nearest_node == self.target_node:\n",
    "                break\n",
    "        self.greedy_search_path = [search_path[0:index+1] for index in range(len(search_path))]\n",
    "        self.search_scores = search_scores\n",
    "        \n",
    "    def a_star_search(self, help_info_weight=1, origin_info_weight=1):\n",
    "        self.greedy_search(help_info_weight, origin_info_weight)\n",
    "        \n",
    "\n",
    "    def generate_greedy_help_text(self,path):\n",
    "        if path[-1] == self.target_node:\n",
    "            return '抵达目标节点' + str(self.target_node)\n",
    "        elif path not in self.search_scores:\n",
    "            return '抵达最大搜索深度,未找到目标节点'\n",
    "        \n",
    "        base_text = '当前可选的子节点及其信息值为 \\n'+ \\\n",
    "                    str(self.search_scores[path]) + '\\n'\n",
    "        if self.target_node in self.search_scores[path]:\n",
    "            return base_text + '当前可选的子节点包含了目标节点,\\n所以选择目标节点'\n",
    "        elif len(self.search_scores[path]) == 1:\n",
    "            return base_text + '因为只有一个子节点,所以选择此节点'\n",
    "        else:\n",
    "            return base_text + '因为'+ \\\n",
    "                    str(min(self.search_scores[path], key=self.search_scores[path].get)) + \\\n",
    "                    '的值最小,所以选择此节点'\n",
    "          \n",
    "    def cal_dis(self,path):\n",
    "        dis = 0\n",
    "        if len(path) > 1:\n",
    "            for i in range(len(path)-1):\n",
    "                dis += self.weighted_edges_dic[frozenset([path[i],path[i+1]])]\n",
    "        return dis\n",
    "    "
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.5.2"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}