# proj: image-outpainting
# file: test.py
# authors: Mark Sabini, Gili Rusak
# desc: Script for simulating the training pipeline. Masks out
# the sides of an image, feeds it through the network, and
# compares the network output to the original image.
# -------------------------------------------------------------
import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()
import numpy as np
from PIL import Image
import model
import util
import os
import sys
model_PATH='/home/jovyan/work/src/output/models/model2000.ckpt'
in_PATH='/home/jovyan/work/images/test.png'
out_PATH='/home/jovyan/work/results/test_output.png'
tf.reset_default_graph()
IMAGE_SZ = 128
img = np.array(Image.open(in_PATH).convert('RGB'))[np.newaxis] / 255.0
img_p = util.preprocess_images_outpainting(img)
G_Z = tf.placeholder(tf.float32, shape=[None, IMAGE_SZ, IMAGE_SZ, 4], name='G_Z')
G_sample = model.generator(G_Z)
saver = tf.train.Saver()
with tf.Session() as sess:
saver.restore(sess, model_PATH)
output, = sess.run([G_sample], feed_dict={G_Z: img_p})
util.save_image(output[0], out_PATH)